Publications by authors named "Grace A Afolaranmi"

Metal-on-metal hip replacement implants generate wear debris and release ions both locally and systemically in patients. To investigate dissemination of metal, we determined blood and organ levels of cobalt (Co), chromium (Cr), and molybdenum (Mo) following the implantation of Co-Cr alloy wear debris in mice using skin pouches as a model system. We observed increased metal levels in blood for up to 72 h; the levels of Co were highest and remained elevated for 7 days.

View Article and Find Full Text PDF

Metal ions (Cr and Co) are released from metal orthopaedic implants in situ. We investigated tissue dissemination of Cr III, Cr VI and Co II ions in the body, and determined if administration of ascorbic acid (AA) affected their in vivo distribution using rats as a model system. Organs of rats treated with both Cr (VI) and Co (II) have higher metal ion levels when compared with control levels in the organs of rats without metal treatment.

View Article and Find Full Text PDF

The effect of in vitro exposure to the metal ions (chromium (VI) and cobalt (II)) on phase I and phase II enzymatic activities in freshly isolated rat hepatocytes is reported. Concentrations of metal ions used reflect those reported in the livers of cadavers that had worn metal-on-metal hip implants. To assess the effect of exposure to metal ions on enzymatic activities of phase I metabolic reactions the hydroxylations of testosterone were measured, and the phase II reactions measured were glucuronidation and sulfation.

View Article and Find Full Text PDF

Metal-on-metal resurfacing arthroplasty is associated with elevated circulating levels of cobalt and chromium ions. To establish the long-term safety of metal-on-metal resurfacing arthroplasty, it has been recommended that during clinical follow-up of these patients, the levels of these metal ions in blood be monitored. In this article, we provide information on the distribution of chromium VI ions (the predominant form of chromium released by cobalt-chrome alloys in vivo and in vitro) in blood fractions.

View Article and Find Full Text PDF