The unconfined compressive strength (UCS) of intact rocks is crucial for engineering applications, but traditional laboratory testing is often impractical, especially for historic buildings lacking sufficient core samples. Non-destructive tests like the Schmidt hammer rebound number and compressional wave velocity offer solutions, but correlating these with UCS requires complex mathematical models. This paper introduces a novel approach using an artificial neural network (ANN) to simultaneously correlate UCS with three non-destructive test indexes: Schmidt hammer rebound number, compressional wave velocity, and open-effective porosity.
View Article and Find Full Text PDFThis retrospective study investigated outcomes of 404 patients with relapsed/refractory (R/R) FMS-like tyrosine kinase 3 (FLT3)-internal tandem duplication (ITD) acute myeloid leukemia (AML) enrolled in the PETHEMA registry, pre-approval of tyrosine kinase inhibitors. Most patients (63%) had received first-line intensive therapy with 3 + 7. Subsequently, patients received salvage with intensive therapy (n = 261), non-intensive therapy (n = 63) or supportive care only (n = 80).
View Article and Find Full Text PDF