Publications by authors named "Graca Soveral"

Peroxiporins are a specialized subset of aquaporins, which are integral membrane proteins primarily known for facilitating water transport across cell membranes. In addition to the classical water transport function, peroxiporins have the unique capability to transport hydrogen peroxide (HO), a reactive oxygen species involved in various cellular signaling pathways and regulation of oxidative stress responses. The regulation of HO levels is crucial for maintaining cellular homeostasis, and peroxiporins play a significant role in this process by modulating its intracellular and extracellular concentrations.

View Article and Find Full Text PDF

Aquaporin-3 (AQP3) is a membrane channel with dual aquaglyceroporin/peroxiporin activity, facilitating the diffusion of water, glycerol and HO across cell membranes. AQP3 shows aberrant expression in melanoma and its role in cell adhesion, migration and proliferation is well described. Gold compounds were shown to modulate AQP3 activity with reduced associated toxicity, making them promising molecules for cancer therapy.

View Article and Find Full Text PDF

Pancreatic cancer is anticipated to be the second leading cause of cancer-related death by 2030. Aquaporins (AQPs), a family of water channel proteins, have been linked to carcinogenesis. The aim of this study was to determine AQP gene expression in pancreatic cancer tissues and to validate aquaporins as possible diagnosis and/or prognosis genes.

View Article and Find Full Text PDF

Background: Lipopolysaccharide (LPS), an effective stimulator of the immune system, has been widely applied in an experimental pig model for human sepsis. Aquaporins (AQPs), a family of small integral membrane proteins responsible for facilitating water fluxes through the cell membrane, offer potential promising drug targets for sepsis treatment due to their role in water balance and inflammation.

Methods: In order to investigate the potential effect of a dietary amino acid mixture supplementation on LPS-challenged weaned piglets, a total of 30, 28-day-old, males were randomly allocated to 1 of 3 dietary treatments for a 5-week period, with 10 animals in each: diet 1 was a control (CTL) treatment; diet 2 was LPS treatment, where the piglets were intraperitoneally administered LPS (at 25 µg/kg body weight); diet 3 was LPS + cocktail treatment, where the piglets were intraperitoneally administered LPS and fed a diet supplemented with a mixture of arginine, branched-chain amino acids (BCAA, leucine, valine, and isoleucine), and cystine.

View Article and Find Full Text PDF

Aquaporin 3 (AQP3) is a peroxiporin, a membrane protein that channels hydrogen peroxide in addition to water and glycerol. AQP3 expression also correlates with tumor progression and malignancy and is, therefore, a potential target in breast cancer therapy. In addition, epithelial growth factor receptor (EGFR) plays an important role in breast cancer.

View Article and Find Full Text PDF

The natural polyphenolic compound Rottlerin (RoT) showed anticancer properties in a variety of human cancers through the inhibition of several target molecules implicated in tumorigenesis, revealing its potential as an anticancer agent. Aquaporins (AQPs) are found overexpressed in different types of cancers and have recently emerged as promising pharmacological targets. Increasing evidence suggests that the water/glycerol channel aquaporin-3 (AQP3) plays a key role in cancer and metastasis.

View Article and Find Full Text PDF

Glycerol is a key metabolite for lipid accumulation in insulin-sensitive tissues. We examined the role of aquaporin-7 (AQP7), the main glycerol channel in adipocytes, in the improvement of brown adipose tissue (BAT) whitening, a process whereby brown adipocytes differentiate into white-like unilocular cells, after cold exposure or bariatric surgery in male Wistar rats with diet-induced obesity (DIO) ( = 229). DIO promoted BAT whitening, evidenced by increased BAT hypertrophy, steatosis and upregulation of the lipogenic factors , and .

View Article and Find Full Text PDF

Obesity is one of the most important metabolic disorders of this century and is associated with a cluster of the most dangerous cardiovascular disease risk factors, such as insulin resistance and diabetes, dyslipidemia, and hypertension, collectively named Metabolic Syndrome. The role of aquaporins (AQP) in glycerol metabolism facilitating glycerol release from the adipose tissue and distribution to various tissues and organs unveils these membrane channels as important players in lipid balance and energy homeostasis and points to their involvement in a variety of pathophysiological mechanisms including insulin resistance, obesity, and diabetes. This review summarizes the physiologic role of aquaglyceroporins in glycerol metabolism and lipid homeostasis, describing their specific tissue distribution, involvement in glycerol balance, and implication in obesity and fat-related metabolic complications.

View Article and Find Full Text PDF

The cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel that is crucial for fluid homeodynamics throughout the male reproductive tract. Previous evidence shed light on a potential molecular partnership between this channel and aquaporins (AQPs). Herein, we explore the role of CFTR on AQPs-mediated glycerol permeability in mouse Sertoli cells (mSCs).

View Article and Find Full Text PDF

Aquaporins (AQPs) are transmembrane channels essential for water, energy, and redox homeostasis, with proven involvement in a variety of pathophysiological conditions such as edema, glaucoma, nephrogenic diabetes insipidus, oxidative stress, sepsis, cancer, and metabolic dysfunctions. The 13 AQPs present in humans are widely distributed in all body districts, drawing cell lineage-specific expression patterns closely related to cell native functions. Compelling evidence indicates that AQPs are proteins with great potential as biomarkers and targets for therapeutic intervention.

View Article and Find Full Text PDF
Article Synopsis
  • Ketogenic diets are low in carbohydrates and high in fats, leading to a state called nutritional ketosis, which affects how the body uses energy.
  • Aquaporins (AQPs) are important proteins that help move water and glycerol in and out of cells, playing a role in energy balance and fat regulation.
  • In a study with mice on a ketogenic diet, researchers found that while both diet groups had similar weights, the ketogenic diet increased certain AQPs and thermogenic gene expressions, indicating a unique response in energy metabolism and fat handling in the body.
View Article and Find Full Text PDF

Background: Aquaporins are membrane channels responsible for the bidirectional transfer of water and small non-charged solutes across cell membranes. AQP3 and AQP5 are overexpressed in pancreatic ductal adenocarcinoma, playing key roles in cell migration, proliferation, and invasion. Here, we evaluated AQP3 and AQP5 involvement in cell biomechanical properties, cell-cell adhesion, and cell migration, following a loss-of-function strategy on BxPC-3 cells.

View Article and Find Full Text PDF

Aquaglyceroporins, a sub-class of aquaporins that facilitate the diffusion of water, glycerol and other small uncharged solutes across cell membranes, have been recognized for their important role in human physiology and their involvement in multiple disorders, mostly related to disturbed energy homeostasis. Aquaglyceroporins dysfunction in a variety of pathological conditions highlighted their targeting as novel therapeutic strategies, boosting the search for potent and selective modulators with pharmacological properties. The identification of selective inhibitors with potential clinical applications has been challenging, relying on accurate assays to measure membrane glycerol permeability and validate effective functional blockers.

View Article and Find Full Text PDF

Oxidative stress can induce genetic instability and change cellular processes, resulting in colorectal cancer. Additionally, adaptation of oxidative defense causes therapy resistance, a major obstacle in successful cancer treatment. Peroxiporins are aquaporin membrane channels that facilitate HO membrane permeation, crucial for regulating cell proliferation and antioxidative defense.

View Article and Find Full Text PDF

The inhibition of glycerol permeation via human aquaporin-10 (hAQP10) by organometallic gold complexes has been studied by stopped-flow fluorescence spectroscopy, and its mechanism has been described using molecular modelling and atomistic simulations. The most effective hAQP10 inhibitors are cyclometalated Au(III) C^N compounds known to efficiently react with cysteine residues leading to the formation of irreversible C-S bonds. Functional assays also demonstrate the irreversibility of the binding to hAQP10 by the organometallic complexes.

View Article and Find Full Text PDF

High-scored premium wines are typically produced under moderate drought stress, suggesting that the water status of grapevine is crucial for wine quality. Aquaporins greatly influence the plant water status by facilitating water diffusion across the plasma membrane in a tightly regulated manner. They adjust the hydraulic conductance of the plasma membrane rapidly and reversibly, which is essential in specific physiological events, including adaptation to soil water scarcity.

View Article and Find Full Text PDF

Skin is the most vulnerable organ of the human body since it is the first line of defense, covering the entire external body surface. Additionally, skin has a critical role in thermoregulation, sensation, immunological surveillance, and biochemical processes such as Vitamin D production by ultraviolet irradiation. The ability of the skin layers and resident cells to maintain skin physiology, such as hydration, regulation of keratinocytes proliferation and differentiation and wound healing, is supported by key proteins such as aquaporins (AQPs) that facilitate the movements of water and small neutral solutes across membranes.

View Article and Find Full Text PDF

The gonadal steroids, including androgens, estrogens and progestogens, are involved in the control of body fat distribution in humans. Nevertheless, not only the size and localization of the fat depots depend on the sex steroids levels, but they can also highly affect the functioning of adipose tissue. Namely, the gonadocorticoids can directly influence insulin signaling, lipid metabolism, fatty acid uptake and adipokine production.

View Article and Find Full Text PDF

Colorectal carcinoma is a complex malignancy and current therapies are hampered by systemic toxicity and tumor resistance to treatment. In the field of cancer therapy, copper (Cu) compounds hold great promise, with some reaching clinical trials. However, the anticancer potential of Cu complexes has not yet been fully disclosed due to speciation in biological systems, leading to inactivation and/or potential side effects.

View Article and Find Full Text PDF

The mammalian immune system senses foreign antigens by mechanisms that involve the interplay of various kinds of immune cells, culminating in inflammation resolution and tissue clearance. The ability of the immune cells to communicate (via chemokines) and to shift shape for migration, phagocytosis or antigen uptake is mainly supported by critical proteins such as aquaporins (AQPs) that regulate water fluid homeostasis and volume changes. AQPs are protein channels that facilitate water and small uncharged molecules' (such as glycerol or hydrogen peroxide) diffusion through membranes.

View Article and Find Full Text PDF

Preeclampsia (PE), a pregnancy disorder influenced by oxidative stress and hypoxia, affects the health of the mother and baby and is associated with an increased risk of future hypertension (HT). Aquaporins are a family of water channels, comprising members that also transport glycerol (aquaglyceroporins) and hydrogen peroxide (peroxiporins), key molecules for metabolic homeostasis and redox signaling. Here, we investigated the association of Aquaporin-3 (AQP3; rs2231231), Aquaporin-7 (AQP7; rs2989924), NOS3 (4B/A intron) and CYBA (rs4673) genetic polymorphisms with the development of hypertensive disorders by qPCR/PCR in a cohort of 150 normotensive (NT) women (N = 90) or with previous PE (N = 60) during pregnancy.

View Article and Find Full Text PDF

The dysfunction of vascular endothelial cells is profoundly implicated in the pathogenesis of atherosclerosis and cardiovascular disease, the global leading cause of death. Aquaporins (AQPs) are membrane channels that facilitate water and glycerol transport across cellular membranes recently implicated in the homeostasis of the cardiovascular system. Apolipoprotein-E deficient () mice are a common model to study the progression of atherosclerosis.

View Article and Find Full Text PDF

The regulation of glycerol permeability in the gastrointestinal tract is crucial to control fat deposition, lipolysis and gluconeogenesis. Knowing that the amino acid glutamine is a physiological regulator of gluconeogenesis, whereas cystine promotes adiposity, herein we investigated the effects of dietary supplementation with glutamine and cystine on the serum biochemical parameters of piglets fed on amino acid-enriched diets, as well as on the transcriptional profile of membrane water and glycerol channels aquaporins (AQPs) in the ileum portion of the small intestine and its impact on intestinal permeability. Twenty male piglets with an initial body weight of 8.

View Article and Find Full Text PDF

Inflammasomes are large immune multiprotein complexes that tightly regulate the production of the pro-inflammatory cytokines, being dependent on cell regulatory volume mechanisms. Aquaporins (AQPs) are protein channels that facilitate the transport of water and glycerol (aquaglyceroporins) through membranes, essential for cell volume regulation. Although these membrane proteins are highly expressed in monocytes and macrophages, their role in the inflammatory process is still unclear.

View Article and Find Full Text PDF