Publications by authors named "Gowrishankar J"

In many bacteria, the essential factors Rho and NusG mediate termination of synthesis of nascent transcripts (including antisense RNAs) that are not being simultaneously translated. It has been proposed that in Rho's absence toxic RNA-DNA hybrids (R-loops) may be generated from nascent untranslated transcripts, and genome-wide mapping studies in Escherichia coli have identified putative loci of R-loop formation from more than 100 endogenous antisense transcripts that are synthesized only in a Rho-deficient strain. Here we provide evidence that engineered expression in wild-type E.

View Article and Find Full Text PDF

Replication of the circular bacterial chromosome is initiated from a locus oriC with the aid of an essential protein DnaA. One approach to identify factors acting to prevent aberrant oriC-independent replication initiation in Escherichia coli has been that to obtain mutants which survive loss of DnaA. Here, we show that a ΔrecD mutation, associated with attenuation of RecBCD's DNA double strand end-resection activity, provokes abnormal replication and rescues ΔdnaA lethality in two situations: (i) in absence of 5'-3' single-strand DNA exonuclease RecJ, or (ii) when multiple two-ended DNA double strand breaks (DSBs) are generated either by I-SceI endonucleolytic cleavages or by radiomimetic agents phleomycin or bleomycin.

View Article and Find Full Text PDF

In Escherichia coli, three isoforms of the essential translation initiation factor IF2 (IF2-1, IF2-2, and IF2-3) are generated from separate in-frame initiation codons in . The isoforms have earlier been suggested to additionally participate in DNA damage repair and replication restart. It is also known that the proteins RecA and RecBCD are needed for repair of DNA double-strand breaks (DSBs) in E.

View Article and Find Full Text PDF

Homologous recombination (HR) is critically important for chromosomal replication, as well as DNA damage repair in all life forms. In Escherichia coli, the process of HR comprises (i) two parallel presynaptic pathways that are mediated, respectively, by proteins RecB/C/D and RecF/O/R/Q; (ii) a synaptic step mediated by RecA that leads to generation of Holliday junctions (HJs); and (iii) postsynaptic steps mediated sequentially by HJ-acting proteins RuvA/B/C followed by proteins PriA/B/C of replication restart. Combined loss of RuvA/B/C and a DNA helicase UvrD is synthetically lethal, which is attributed to toxicity caused by accumulated HJs since viability in these double mutant strains is restored by removal of the presynaptic or synaptic proteins RecF/O/R/Q or RecA, respectively.

View Article and Find Full Text PDF

Topoisomerase I (Topo I) of Escherichia coli, encoded by , acts to relax negative supercoils in DNA. Topo I deficiency results in hypernegative supercoiling, formation of transcription-associated RNA-DNA hybrids (R-loops), and DnaA- and -independent constitutive stable DNA replication (cSDR), but some uncertainty persists as to whether is essential for viability in E. coli and related enterobacteria.

View Article and Find Full Text PDF

RNase E is a 472-kDa homo-tetrameric essential endoribonuclease involved in RNA processing and turnover in Escherichia coli. In its N-terminal half (NTH) is the catalytic active site, as also a substrate 5'-sensor pocket that renders enzyme activity maximal on 5'-monophosphorylated RNAs. The protein's non-catalytic C-terminal half (CTH) harbours RNA-binding motifs and serves as scaffold for a multiprotein degradosome complex, but is dispensable for viability.

View Article and Find Full Text PDF

The Dam DNA methylase of Escherichia coli is required for methyl-directed mismatch repair, regulation of chromosomal DNA replication initiation from oriC (which is DnaA-dependent), and regulation of gene expression. Here, we show that Dam suppresses aberrant oriC-independent chromosomal replication (also called constitutive stable DNA replication, or cSDR). Dam deficiency conferred cSDR and, in presence of additional mutations (Δtus, rpoB*35) that facilitate retrograde replication fork progression, rescued the lethality of ΔdnaA mutants.

View Article and Find Full Text PDF

H-NS is an abundant nucleoid-associated protein in the enterobacteria that mediates both chromatin compaction and transcriptional silencing of numerous genes, especially those that have been acquired by horizontal transfer or that are involved in virulence functions. With two dimerization domains (N-terminal and central) and a C-terminal DNA-binding domain, the 15 kDa H-NS polypeptide can assemble as long polymeric filaments on DNA, and mutations in any of the three domains confer a dominant-negative phenotype in vivo by a subunit-poisoning mechanism. Here we confirm that several of these mutants [L26P, I119T and a truncation beyond residue 92(Δ93)] are also dominant-negative in vitro, in that they reverse the inhibition imposed by native H-NS in two different transcription assay formats (initiation+elongation, or elongation alone).

View Article and Find Full Text PDF

Transcription termination by Rho is essential for viability in various bacteria, including some major pathogens. Since Rho acts by targeting nascent RNAs that are not simultaneously translated, it also regulates antisense transcription. Here we show that RNase H-deficient mutants of Escherichia coli exhibit heightened sensitivity to the Rho inhibitor bicyclomycin, and that Rho deficiency provokes increased formation of RNA-DNA hybrids (R-loops) which is ameliorated by expression of the phage T4-derived R-loop helicase UvsW.

View Article and Find Full Text PDF

In bacterial cells, bidirectional replication of the circular chromosome is initiated from a single origin (oriC) and terminates in an antipodal terminus region such that movement of the pair of replication forks is largely codirectional with transcription. The terminus region is flanked by discrete Ter sequences that act as polar, or direction-dependent, arrest sites for fork progression. Alternative oriC-independent modes of replication initiation are possible, one of which is constitutive stable DNA replication (cSDR) from transcription-associated RNA-DNA hybrids or R-loops.

View Article and Find Full Text PDF

Nascent untranslated transcripts in bacteria are prone to generating RNA-DNA hybrids (R-loops); Rho-dependent transcription termination acts to reduce their prevalence. Here we discuss the mechanisms of R-loop formation and growth inhibition in bacteria.

View Article and Find Full Text PDF

Two pathways of transcription termination, factor-independent and -dependent, exist in bacteria. The latter pathway operates on nascent transcripts that are not simultaneously translated and requires factors Rho, NusG, and NusA, each of which is essential for viability of WT Escherichia coli. NusG and NusA are also involved in antitermination of transcription at the ribosomal RNA operons, as well as in regulating the rates of transcription elongation of all genes.

View Article and Find Full Text PDF

The protein-gene pairs ArgP-argO of Escherichia coli and LysG-lysE of Corynebacterium glutamicum are orthologous, with the first member of each pair being a LysR-type transcriptional regulator and the second its target gene encoding a basic amino acid exporter. Whereas LysE is an exporter of arginine (Arg) and lysine (Lys) whose expression is induced by Arg, Lys, or histidine (His), ArgO exports Arg alone, and its expression is activated by Arg but not Lys or His. We have now reconstituted in E.

View Article and Find Full Text PDF

The endonuclease RNase E of Escherichia coli is essential for viability, but deletion of its C-terminal half (CTH) is not lethal. RNase E preferentially acts on 5'-monophosphorylated RNA whose generation from primary transcripts is catalysed by RppH, but ΔRppH strains are viable. Here we show that the RNase E-ΔCTH ΔRppH combination is lethal, and that the lethality is suppressed by rho or nusG mutations impairing Rho-dependent transcription termination.

View Article and Find Full Text PDF

Initially identified as an inhibitor of oriC-initiated DNA replication in vitro, the ArgP or IciA protein of Escherichia coli has subsequently been described as a nucleoid-associated protein and also as a transcriptional regulator of genes involved in DNA replication (dnaA and nrdA) and amino acid metabolism (argO, dapB, and gdhA [the last in Klebsiella pneumoniae]). ArgP mediates lysine (Lys) repression of argO, dapB, and gdhA in vivo, for which two alternative mechanisms have been identified: at the dapB and gdhA regulatory regions, ArgP binding is reduced upon the addition of Lys, whereas at argO, RNA polymerase is trapped at the step of promoter clearance by Lys-bound ArgP. In this study, we have examined promoter-lac fusions in strains that were argP(+) or ΔargP or that were carrying dominant argP mutations in order to identify several new genes that are ArgP-regulated in vivo, including lysP, lysC, lysA, dapD, and asd (in addition to argO, dapB, and gdhA).

View Article and Find Full Text PDF

The proteins NusA and NusG, which are essential for the viability of wild-type Escherichia coli, participate in various postinitiation steps of transcription including elongation, antitermination, and termination. NusG is required, along with the essential Rho protein, for factor-dependent transcription termination (also referred to as polarity), but the role of NusA is less clear, with conflicting reports that it both promotes and inhibits the process. In this study, we found that a recessive missense nusA mutant [nusA(R258C)] exhibits a transcription termination-defective (that is, polarity-relieved) phenotype, much like missense mutants in rho or nusG, but is unaffected for either the rate of transcription elongation or antitermination in λ phage.

View Article and Find Full Text PDF

Nascent transcripts in Escherichia coli that fail to be simultaneously translated are subject to a factor-dependent mechanism of termination (also termed a polarity) that involves the proteins Rho and NusG. In this study, we found that overexpression of YdgT suppressed the polarity relief phenotypes and restored the efficiency of termination in rho or nusG mutants. YdgT and Hha belong to the H-NS and StpA family of proteins that repress a large number of genes in Gram-negative bacteria.

View Article and Find Full Text PDF

The PhoP-PhoQ two-component system of Yersinia pseudotuberculosis, a Gram-negative enteric pathogen which causes a variety of gastrointestinal and extraintestinal infections in humans, has been shown to be necessary for virulence. A phoP-phoQ null mutant of a strain of Y. pseudotuberculosis cured of its native plasmid pYV was obtained and studied for generation of immune response in mouse model following intravenous inoculation.

View Article and Find Full Text PDF

In vivo transcription of the Escherichia coli argO gene, which encodes an arginine (Arg) exporter, requires the LysR-family regulator protein ArgP (previously called IciA) and is induced in the presence of Arg or its naturally occurring antimetabolite analog canavanine. Lysine (Lys) addition, on the other hand, phenocopies an argP mutation to result in the shutoff of argO expression. We now report that the ArgP dimer by itself is able to bind the argO promoter-operator region to form a binary complex, but that the formation of a ternary complex with RNA polymerase is greatly stimulated only in presence of a coeffector.

View Article and Find Full Text PDF

Active mechanisms exist to prevent transcription that is uncoupled from translation in the protein-coding genes of bacteria, as exemplified by the phenomenon of nonsense polarity. Bacterial transcription-translation coupling may be viewed as one among several co-transcriptional processes, including those for mRNA processing and export in the eukaryotes, that operate in the various life forms to render the nascent transcript unavailable for formation of otherwise deleterious R-loops in the genome.

View Article and Find Full Text PDF

An ampicillin enrichment strategy following transposon insertion mutagenesis was employed to obtain NaCl-sensitive mutants of a gltBD (glutamate synthase [GOGAT]-deficient) strain of Escherichia coli. It was reasoned that the gltBD mutation would sensitize the parental strain even to small perturbations affecting osmotolerance. Insertions conferring an osmosensitive phenotype were identified in the proU, argP (formerly iciA), and glnE genes encoding a glycine betaine/proline transporter, a LysR-type transcriptional regulator, and the adenylyltransferase for glutamine synthetase, respectively.

View Article and Find Full Text PDF

The anonymous open reading frame yggA of Escherichia coli was identified in this study as a gene that is under the transcriptional control of argP (previously called iciA), which encodes a LysR-type transcriptional regulator protein. Strains with null mutations in either yggA or argP were supersensitive to the arginine analog canavanine, and yggA-lac expression in vivo exhibited argP(+)-dependent induction by arginine. Lysine supplementation phenocopied the argP null mutation in that it virtually abolished yggA expression, even in the argP+ strain.

View Article and Find Full Text PDF

Escherichia coli nusG and rho mutants, which are defective in transcription termination, are killed following transformation with several ColE1-like plasmids that lack the plasmid-encoded copy-number regulator gene rom because of uncontrolled plasmid replication within the cells. In this study, a mutation [dnaC1331(A84T)] in the dnaC gene encoding the replicative helicase-loading protein was characterized as a suppressor of this plasmid-mediated lethality phenotype. The mutation also reduced the copy number of the plasmids in otherwise wild-type strains.

View Article and Find Full Text PDF