Thin film materials for photovoltaics such as cadmium telluride (CdTe), copper-indium diselenide-based chalcopyrites (CIGS), and lead iodide-based perovskites offer the potential of lower solar module capital costs and improved performance to microcrystalline silicon. However, for decades understanding and controlling hole and electron concentration in these polycrystalline films has been extremely challenging and limiting. Ionic bonding between constituent atoms often leads to tenacious intrinsic compensating defect chemistries that are difficult to control.
View Article and Find Full Text PDF