Publications by authors named "Gowri Srinivasa"

Background: Graph representational learning can detect topological patterns by leveraging both the network structure as well as nodal features. The basis of our exploration involves the application of graph neural network architectures and machine learning to resting-state functional Magnetic Resonance Imaging (rs-fMRI) data for the purpose of detecting schizophrenia. Our study uses single-site data to avoid the shortcomings in generalizability of neuroimaging data obtained from multiple sites.

View Article and Find Full Text PDF

Background: RNA sequencing (RNA-Seq) is a technique that utilises the capabilities of next-generation sequencing to study a cellular transcriptome i.e., to determine the amount of RNA at a given time for a given biological sample.

View Article and Find Full Text PDF

The psychological, emotional and social well-being of an individual determines their ability to contribute and function as a social member. Several studies over the years have proven that an alarming number of people live with mental illnesses, of which only a fraction is documented. Studies conducted by Open Sourcing Mental Illness (OSMI) organization have indicated that these figures are much higher in the tech industry.

View Article and Find Full Text PDF

A recurrent neural network (RNN) is a machine learning model that learns the relationship between elements of an input series, in addition to inferring a relationship between the data input to the model and target output. Memory augmentation allows the RNN to learn the interrelationships between elements of the input over a protracted length of the input series. Inspired by the success of stack augmented RNN (StackRNN) to generate strings for various applications, we present two memory augmented RNN-based architectures: the Neural Turing Machine (NTM) and the Differentiable Neural Computer (DNC) for the de-novo generation of small molecules.

View Article and Find Full Text PDF

The ability to estimate the probability of a drug to receive approval in clinical trials provides natural advantages to optimizing pharmaceutical research workflows. Success rates of clinical trials have deep implications for costs, duration of development, and under pressure due to stringent regulatory approval processes. We propose a machine learning approach that can predict the outcome of the trial with reliable accuracies, using biological activities, physicochemical properties of the compounds, target-related features, and NLP-based compound representation.

View Article and Find Full Text PDF

Sepsis is a serious cause of morbidity and mortality and yet its pathophysiology remains elusive. Recently, medical and technological advances have helped redefine the criteria for sepsis incidence, which is otherwise poorly understood. With the recording of clinical parameters and outcomes of patients, enabling technologies, such as machine learning, open avenues for early prognostic systems for sepsis.

View Article and Find Full Text PDF

Adverse drug reactions (ADRs) are pharmacological events triggered by drug interactions with various sources of origin including drug-drug interactions. While there are many computational studies that explore models to predict ADRs originating from single drugs, only a few of them explore models that predict ADRs from drug combinations. Further, as far as we know, none of them have developed models using transcriptomic data, specifically the LINCS L1000 drug-induced gene expression data to predict ADRs for drug combinations.

View Article and Find Full Text PDF

Computer aided analysis plays a nontrivial role in assisting the diagnosis of various eye pathologies. In this paper, we propose a framework to help diagnose the presence of Aggressive Posterior Retinopathy Of Prematurity (APROP), a pathology that is characterised by rapid onset and increased tortuosity of blood vessels close to the optic disc (OD). We quantify vessel characteristics that are of clinical relevance to APROP such as tortuosity and the extent of branching i.

View Article and Find Full Text PDF

In this paper we provide rigorous proof for the convergence of an iterative voting-based image segmentation algorithm called Active Masks. Active Masks (AM) was proposed to solve the challenging task of delineating punctate patterns of cells from fluorescence microscope images. Each iteration of AM consists of a linear convolution composed with a nonlinear thresholding; what makes this process special in our case is the presence of additive terms whose role is to "skew" the voting when prior information is available.

View Article and Find Full Text PDF

We study the convergence behavior of the Active Mask (AM) framework, originally designed for segmenting punctate image patterns. AM combines the flexibility of traditional active contours, the statistical modeling power of region-growing methods, and the computational efficiency of multiscale and multiresolution methods. Additionally, it achieves experimental convergence to zero-change (fixed-point) configurations, a desirable property for segmentation algorithms.

View Article and Find Full Text PDF

We propose a new active mask algorithm for the segmentation of fluorescence microscope images of punctate patterns. It combines the (a) flexibility offered by active-contour methods, (b) speed offered by multiresolution methods, (c) smoothing offered by multiscale methods, and (d) statistical modeling offered by region-growing methods into a fast and accurate segmentation tool. The framework moves from the idea of the "contour" to that of "inside and outside," or masks, allowing for easy multidimensional segmentation.

View Article and Find Full Text PDF

We propose an active mask segmentation framework that combines the advantages of statistical modeling, smoothing, speed and flexibility offered by the traditional methods of region-growing, multiscale, multiresolution and active contours respectively. At the crux of this framework is a paradigm shift from evolving contours in the continuous domain to evolving multiple masks in the discrete domain. Thus, the active mask framework is particularly suited to segment digital images.

View Article and Find Full Text PDF

Background: Fluorescence microscopy is widely used to determine the subcellular location of proteins. Efforts to determine location on a proteome-wide basis create a need for automated methods to analyze the resulting images. Over the past ten years, the feasibility of using machine learning methods to recognize all major subcellular location patterns has been convincingly demonstrated, using diverse feature sets and classifiers.

View Article and Find Full Text PDF