Dielectrophoresis is a powerful and well-established technique that allows label-free, non-invasive manipulation of cells and particles by leveraging their electrical properties. The practical implementation of the associated electronics and user interface in a biology laboratory, however, requires an engineering background, thus hindering the broader adoption of the technique. In order to address these challenges and to bridge the gap between biologists and the engineering skills required for the implementation of DEP platforms, we report here a custom-built, compact, universal electronic platform termed ADEPT (adaptable dielectrophoresis embedded platform tool) for use with a simple microfluidic chip containing six microelectrodes.
View Article and Find Full Text PDFTriplet excitons have been identified as the major obstacle to the realisation of organic laser diodes, as accumulation of triplet excitons leads to significant losses under continuous wave (CW) operation and/or electrical excitation. Here, we report the design and synthesis of a solid-state organic triplet quencher, as well as in-depth studies of its dispersion into a solution processable bis-stilbene-based laser dye. By blending the laser dye with 20 wt% of the quencher, negligible effects on the ASE thresholds, but a complete suppression of singlet-triplet annihilation (STA) and a 20-fold increase in excited-state photostability of the laser dye under CW excitation, were achieved.
View Article and Find Full Text PDFTetilla dactyloidea (Carter, 1869) is a marine sponge classified under Demospongia and recent studies have demonstrated that active constituents of Demospongia class have exhibited several potential medical applications. However, no preliminary pharmacological studies have been reported so far. The present investigation was carried out to evaluate the zoo-chemical status, antioxidant potential and anticancer activity of Crude Methanolic Extract of Tetilla dactyloidea (CMETD).
View Article and Find Full Text PDF