Background: Long noncoding RNA (lncRNA) have been implicated in the etiology of alcohol use. Since lncRNA provide another layer of complexity to the transcriptome, assessing their expression in the brain is the first critical step toward understanding lncRNA functions in alcohol use and addiction. Thus, we sought to profile lncRNA expression in the nucleus accumbens (NAc) in a large postmortem alcohol brain sample.
View Article and Find Full Text PDFIn recent years, large scale meta-analysis of genome-wide association studies (GWAS) have reliably identified genetic polymorphisms associated with neuropsychiatric disorders such as schizophrenia (SCZ), bipolar disorder (BPD) and major depressive disorder (MDD). However, the majority of disease-associated single nucleotide polymorphisms (SNPs) appear within functionally ambiguous non-coding genomic regions. Recently, increased emphasis has been placed on identifying the functional relevance of disease-associated variants via correlating risk polymorphisms with gene expression levels in etiologically relevant tissues.
View Article and Find Full Text PDFAlcohol consumption is known to lead to gene expression changes in the brain. After performing weighted gene co-expression network analyses (WGCNA) on genome-wide mRNA and microRNA (miRNA) expression in Nucleus Accumbens (NAc) of subjects with alcohol dependence (AD; N = 18) and of matched controls (N = 18), six mRNA and three miRNA modules significantly correlated with AD were identified (Bonferoni-adj. p≤ 0.
View Article and Find Full Text PDFMicroRNAs (miRNAs) are small non-coding RNAs that mainly function as negative regulators of gene expression (Lai, 2002) and have been shown to be involved in schizophrenia etiology through genetic and expression studies (Burmistrova et al., 2007; Hansen et al., 2007a; Perkins et al.
View Article and Find Full Text PDF