In attention deficit hyperactivity disorder (ADHD), hyperactivity and impulsivity occur in response to reward. Herein we report a novel animal model in which male Sprague-Dawley rats exposed to repeated hypoxic brain injury during the equivalent of extreme prematurity were ADHD-like hyperactive/impulsive in response to delayed reward and attentive at 3 months of age. Thus, a unique animal model of one of the presentations/subtypes of ADHD was discovered.
View Article and Find Full Text PDFStroke therapy has largely focused on preventing damage and encouraging repair outside the ischemic core, as the core is considered irreparable. Recently, several studies have suggested endogenous responses within the core are important for limiting the spread of damage and enhancing recovery, but the role of blood flow and capillary pericytes in this process is unknown. Using the Rose Bengal photothrombotic model of stroke, we illustrate blood vessels are present in the ischemic core and peri-lesional regions 2 weeks post stroke in male mice.
View Article and Find Full Text PDFCa/calmodulin-dependent protein kinase II alpha (CaMKIIα) is a potential target for acute neuroprotection due to its key role in physiological and pathological glutamate signaling. The hub domain organizes the CaMKII holoenzyme into large oligomers, and additional functional effects on holoenzyme activation have lately emerged. We recently reported that compounds related to the proposed neuromodulator γ-hydroxybutyrate (GHB) selectively bind to the CaMKIIα hub domain and increase hub thermal stabilization, which is believed to have functional consequences and to mediate neuroprotection.
View Article and Find Full Text PDFOncostatin M (OSM) is an IL-6 family member which exerts neuroprotective and remyelination-promoting effects after damage to the central nervous system (CNS). However, the role of OSM in neuro-inflammation is poorly understood. Here, we investigated OSM's role in pathological events important for the neuro-inflammatory disorder multiple sclerosis (MS).
View Article and Find Full Text PDFThe migration of circulating leukocytes into the central nervous system (CNS) is a key driver of multiple sclerosis (MS) pathogenesis. The monoclonal antibody natalizumab proved that pharmaceutically obstructing this process is an effective therapeutic approach for treating relapsing-remitting MS (RRMS). Unfortunately, the clinical efficacy of natalizumab is somewhat offset by its incapacity to control the progressive forms of MS (PMS) and by life-threatening side effects in RRMS rising from the expression of its molecular target, very late antigen 4 (VLA4), on most immune cells and consequent impairment of CNS immunosurveillance.
View Article and Find Full Text PDFN-acylethanolamines (NAE, also called ethanolamides) are significant lipid signaling molecules with anti-inflammatory, pain-relieving, cell-protective, and anticancer properties. Here, we present the use of a hitherto unreported group of Δ3-NAE and also some Δ4- and Δ5-NAE, in in vitro and in vivo assays to gain a better understanding of their structure-bioactivity relationships. We have developed an efficient synthetic method to rapidly produce novel unlabeled and C-labeled Δ3-NAE (NAE-18:5n-3, NAE-18:4n-6) and Δ4-NAE (NAE-22:5n-6).
View Article and Find Full Text PDFCa/calmodulin-dependent protein kinase II alpha subunit (CaMKIIα) is a key neuronal signaling protein and an emerging drug target. The central hub domain regulates the activity of CaMKIIα by organizing the holoenzyme complex into functional oligomers, yet pharmacological modulation of the hub domain has never been demonstrated. Here, using a combination of photoaffinity labeling and chemical proteomics, we show that compounds related to the natural substance γ-hydroxybutyrate (GHB) bind selectively to CaMKIIα.
View Article and Find Full Text PDFDysregulated immune profiles have been described in symptomatic patients infected with SARS-CoV-2. Whether the reported immune alterations are specific to SARS-CoV-2 infection or also triggered by other acute illnesses remains unclear. We performed flow cytometry analysis on fresh peripheral blood from a consecutive cohort of (a) patients hospitalized with acute SARS-CoV-2 infection, (b) patients of comparable age and sex hospitalized for another acute disease (SARS-CoV-2 negative), and (c) healthy controls.
View Article and Find Full Text PDFNeurol Neuroimmunol Neuroinflamm
November 2020
Objective: To investigate the involvement of interleukin (IL)-26 in neuroinflammatory processes in multiple sclerosis (MS), in particular in blood-brain barrier (BBB) integrity.
Methods: Expression of IL-26 was measured in serum, CSF, in vitro differentiated T helper (T) cell subsets, and postmortem brain tissue of patients with MS and controls by ELISA, quantitative PCR, and immunohistochemistry. Primary human and mouse BBB endothelial cells (ECs) were treated with IL-26 in vitro and assessed for BBB integrity.
Transl Stroke Res
February 2021
The extracellular matrix fragment perlecan domain V is neuroprotective and functionally restorative following experimental stroke. As neurogenesis is an important component of chronic post-stroke repair, and previous studies have implicated perlecan in developmental neurogenesis, we hypothesized that domain V could have a broad therapeutic window by enhancing neurogenesis after stroke. We demonstrated that domain V is chronically increased in the brains of human stroke patients, suggesting that it is present during post-stroke neurogenic periods.
View Article and Find Full Text PDFInflammatory processes are known to contribute to tissue damage in the central nervous system (CNS) across a broad range of neurological conditions, including stroke. Gamma amino butyric acid (GABA), the main inhibitory neurotransmitter in the CNS, has been implicated in modulating peripheral immune responses by acting on GABA receptors on antigen-presenting cells and lymphocytes. Here, we investigated the effects and mechanism of action of the delta-selective compound, DS2, to improve stroke recovery and modulate inflammation.
View Article and Find Full Text PDFRegeneration of myelin, following injury, can occur within the central nervous system to reinstate proper axonal conductance and provide trophic support. Failure to do so renders the axons vulnerable, leading to eventual degeneration, and neuronal loss. Thus, it is essential to understand the mechanisms by which remyelination or failure to remyelinate occur, particularly in the context of demyelinating and neurodegenerative disorders.
View Article and Find Full Text PDFFrontal infarcts can produce cognitive impairments that affect an individual's ability to function in everyday life. However, the precise types of deficits, and their underlying mechanisms, are not well-understood. Here we used a prefrontal photothrombotic stroke model in C57BL/6J mice to characterise specific cognitive changes that occur in the 6 weeks post-stroke.
View Article and Find Full Text PDFStroke remains a leading cause of disability worldwide. Recently, we have established an animal model of stroke that results in delayed impairment in spatial memory, allowing us to better investigate cognitive deficits. Young and aged brains show different recovery profiles after stroke; therefore, we assessed aged-related differences in poststroke cognition.
View Article and Find Full Text PDFThe blood-brain barrier (BBB) has a major role in maintaining brain homeostasis through the specialized function of brain endothelial cells (BECs). Inflammation of the BECs and loss of their neuroprotective properties is associated with several neurological disorders, including the chronic neuro-inflammatory disorder multiple sclerosis (MS). Yet, the underlying mechanisms of a defective BBB in MS remain largely unknown.
View Article and Find Full Text PDFDespite the fact that approximately 80% of strokes occur in those aged over 60 years, many pre-clinical stroke studies have been conducted in younger adult rodents, raising debate about translation and generalizability of these results. We were interested in potential age differences in stroke-induced secondary neurodegeneration (SND). SND involves the death of neurons in areas remote from, but connected to, the site of infarction, as well as glial disturbances.
View Article and Find Full Text PDFSerial-order behavior is the ability to complete a sequence of responses in a predetermined order to achieve a reward. In birds, serial-order behavior is thought to be impaired by damage to the nidopallium caudolaterale (NCL). In the current study, we examined the role of the NCL in serial-order behavior by training pigeons on a 4-item serial-order task and a go/no-go discrimination task.
View Article and Find Full Text PDFIt is known that high blood pressure variability (BPV) in acute ischemic stroke is associated with adverse outcomes, yet there are no therapeutic treatments to reduce BPV. Studies have found increasing nitric oxide (NO) bioavailability improves neurological function following stroke, but whether dietary nitrate supplementation could reduce BPV remains unknown. We investigated the effects of dietary nitrate supplementation on heart rate (HR), blood pressure (BP), and beat-to-beat BPV using wireless telemetry in a rat model of distal middle cerebral artery occlusion.
View Article and Find Full Text PDFExtracellular matrix (ECM) proteins secreted by blood-brain barrier (BBB) endothelial cells (ECs) are implicated in cell trafficking. We discovered that the expression of ECM epidermal growth factor-like protein 7 (EGFL7) is increased in the CNS vasculature of patients with multiple sclerosis (MS), and in mice with experimental autoimmune encephalomyelitis (EAE). Perivascular CD4 T lymphocytes colocalize with ECM-bound EGFL7 in MS lesions.
View Article and Find Full Text PDFBackground And Purpose: Human amnion epithelial cells (hAECs) are nonimmunogenic, nontumorigenic, anti-inflammatory cells normally discarded with placental tissue. We reasoned that their profile of biological features, wide availability, and the lack of ethical barriers to their use could make these cells useful as a therapy in ischemic stroke.
Methods: We tested the efficacy of acute (1.
Tonic inhibitory currents, mediated by extrasynaptic GABA receptors, are elevated at a delay following stroke. Flavonoids minimise the extent of cellular damage following stroke, but little is known about their mode of action. We demonstrate that the flavonoid, 2'-methoxy-6-methylflavone (0.
View Article and Find Full Text PDFThe blood-brain barrier (BBB) assures brain homeostasis through the specialized function of brain endothelial cells (BECs). Dysfunction of the BBB due to inflammatory processes is associated with several neurological disorders, including multiple sclerosis (MS). Understanding the mechanisms that underlie these processes may ultimately lead to new therapeutic strategies to restore BBB function, thereby fighting disease progression.
View Article and Find Full Text PDFCell-surface molecules are dynamically regulated at the synapse to assemble and disassemble adhesive contacts that are important for synaptogenesis and for tuning synaptic transmission. Metalloproteinases dynamically regulate cellular behaviors through the processing of cell surface molecules. In the present study, we evaluated the role of membrane-type metalloproteinases (MT-MMPs) in excitatory synaptogenesis.
View Article and Find Full Text PDFIschemic stroke triggers an elevation in tonic GABA inhibition that impairs the ability of the brain to form new structural and functional cortical circuits required for recovery. This stroke-induced increase in tonic inhibition is caused by impaired GABA uptake via the glial GABA transporter GAT3, highlighting GAT3 as a novel target in stroke recovery. Using a photothrombotic stroke mouse model, we show that GAT3 protein levels are decreased in peri-infarct tissue from 6 h to 42 days post-stroke.
View Article and Find Full Text PDF