Publications by authors named "Gowher H"

The heart is the first organ formed during mammalian development and functions to distribute nutrients and oxygen to other parts of the developing embryo. Cardiomyocytes are the major cell types of the heart and provide both structural support and contractile function to the heart. The successful differentiation of cardiomyocytes during early development is under tight regulation by physical and molecular factors.

View Article and Find Full Text PDF

Cardiomyocytes are the largest cell type that make up the heart and confer beating activity to the heart. The proper differentiation of cardiomyocytes relies on the efficient transmission and perception of differentiation cues from several signaling pathways that influence cardiomyocyte-specific gene expression programs. Signaling pathways also mediate intercellular communications to promote proper cardiomyocyte differentiation.

View Article and Find Full Text PDF

The differentiation of ESCs into cardiomyocytes in vitro is an excellent and reliable model system for studying normal cardiomyocyte development in mammals, modeling cardiac diseases, and for use in drug screening. Mouse ESC differentiation still provides relevant biological information about cardiac development. However, the current methods for efficiently differentiating ESCs into cardiomyocytes are limiting.

View Article and Find Full Text PDF

RNA methylation is a ubiquitous post-transcriptional modification found in diverse RNA classes and is a critical regulator of gene expression. In this study, we used Zika virus RNA methyltransferase (MTase) to develop a highly sensitive microplate assay that uses a biotinylated RNA substrate and radiolabeled AdoMet coenzyme. The assay is fast, highly reproducible, exhibits linear progress-curve kinetics under multiple turnover conditions, has high sensitivity in competitive inhibition assays, and significantly lower background levels compared with the currently used method.

View Article and Find Full Text PDF

Embryonic expression of DNMT3B is critical for establishing de novo DNA methylation. This study uncovers the mechanism through which the promoter-associated long non-coding RNA (lncRNA) Dnmt3bas controls the induction and alternative splicing of Dnmt3b during embryonic stem cell (ESC) differentiation. Dnmt3bas recruits the PRC2 (polycomb repressive complex 2) at cis-regulatory elements of the Dnmt3b gene expressed at a basal level.

View Article and Find Full Text PDF

The role of ER Ca release via ryanodine receptors (RyR) in pancreatic β-cell function is not well defined. Deletion of RyR2 from the rat insulinoma INS-1 (RyR2) enhanced IP receptor activity stimulated by 7.5 mM glucose, coincident with reduced levels of the protein IP Receptor Binding protein released with Inositol 1,4,5 Trisphosphate (IRBIT).

View Article and Find Full Text PDF

In mammals, DNA methyltransferases DNMT1 and DNMT3's (A, B and L) deposit and maintain DNA methylation in dividing and nondividing cells. Although these enzymes have an unremarkable DNA sequence specificity (CpG), their regional specificity is regulated by interactions with various protein factors, chromatin modifiers, and post-translational modifications of histones. Changes in the DNMT expression or interacting partners affect DNA methylation patterns.

View Article and Find Full Text PDF

Differential DNA methylation is characteristic of gene regulatory regions, such as enhancers, which mostly constitute low or intermediate CpG content in their DNA sequence. Consequently, quantification of changes in DNA methylation at these sites is challenging. Given that DNA methylation across most of the mammalian genome is maintained, the use of genome-wide bisulfite sequencing to measure fractional changes in DNA methylation at specific sites is an overexertion which is both expensive and cumbersome.

View Article and Find Full Text PDF

T-cell lymphoblastic lymphoma (T-LBL) is a heterogeneous malignancy of lymphoblasts committed to T-cell lineage. The dismal outcomes (15%-30%) after T-LBL relapse warrant establishing risk-based treatment. To our knowledge, this study presents the first comprehensive, systematic, integrated, genome-wide analysis including relapsed cases that identifies molecular markers of prognostic relevance for T-LBL.

View Article and Find Full Text PDF

Exploring the structure-activity relationship (SAR) at the cationic part of arylthiazole antibiotics revealed hydrazine as an active moiety. The main objective of the study is to overcome the inherited toxicity associated with the free hydrazine. A series of hydrocarbon bridges was inserted in between the groups, to separate the two amino groups.

View Article and Find Full Text PDF

We have previously shown that the highly prevalent acute myeloid leukemia (AML) mutation, Arg882His, in DNMT3A disrupts its cooperative mechanism and leads to reduced enzymatic activity, thus explaining the genomic hypomethylation in AML cells. However, the underlying cause of the oncogenic effect of Arg882His in DNMT3A is not fully understood. Here, we discovered that DNMT3A WT enzyme under conditions that favor non-cooperative kinetic mechanism as well as DNMT3A Arg882His variant acquire CpG flanking sequence preference akin to that of DNMT3B, which is non-cooperative.

View Article and Find Full Text PDF

An aberrant increase in pluripotency gene (PpG) expression due to enhancer reactivation could induce stemness and enhance the tumorigenicity of cancer stem cells. Silencing of PpG enhancers (PpGe) during embryonic stem cell differentiation involves Lsd1-mediated H3K4me1 demethylation and DNA methylation. Here, we observed retention of H3K4me1 and DNA hypomethylation at PpGe associated with a partial repression of PpGs in F9 embryonal carcinoma cells (ECCs) post-differentiation.

View Article and Find Full Text PDF

The narrow antibacterial spectrum of phenylthiazole antibiotics was expanded by replacing central thiazole with a pyrazole ring while maintaining its other pharmacophoric features. The most promising derivative, compound , was more potent than vancomycin against multidrug-resistant Gram-positive clinical isolates, including vancomycin- and linezolid-resistant methicillin-resistant MRSA), with a minimum inhibitory concentration (MIC) value as low as 0.5 μg/mL.

View Article and Find Full Text PDF

DNA methylation, a modification found in most species, regulates chromatin functions in conjunction with other epigenome modifications, such as histone post-translational modifications and non-coding RNAs. In mammals, DNA methylation has essential roles in development by orchestrating the generation and maintenance of the phenotypic diversity of human cell types. This Special Issue of Genes contains eight review articles, which cover several aspects of epigenome regulation by DNA methyltransferases (DNMTs), the enzymes responsible for the introduction of DNA methylation.

View Article and Find Full Text PDF

Despite a large body of evidence supporting the role of aberrant DNA methylation in etiology of several human diseases, the fundamental mechanisms that regulate the activity of mammalian DNA methyltransferases (DNMTs) are not fully understood. Recent advances in whole genome association studies have helped identify mutations and genetic alterations of DNMTs in various diseases that have a potential to affect the biological function and activity of these enzymes. Several of these mutations are germline-transmitted and associated with a number of hereditary disorders, which are potentially caused by aberrant DNA methylation patterns in the regulatory compartments of the genome.

View Article and Find Full Text PDF

Antibiotic resistance remains a pressing medical challenge for which novel antibacterial agents are urgently needed. The phenylthiazole scaffold represents a promising platform to develop novel antibacterial agents for drug-resistant infections. However, enhancing the physicochemical profile of this class of compounds remains a challenging endeavor to address to successfully translate these molecules into novel antibacterial agents in the clinic.

View Article and Find Full Text PDF

DNMT3L (DNMT3-like), a member of the DNMT3 family, has no DNA methyltransferase activity but regulates de novo DNA methylation. While biochemical studies show that DNMT3L is capable of interacting with both DNMT3A and DNMT3B and stimulating their enzymatic activities, genetic evidence suggests that DNMT3L is essential for DNMT3A-mediated de novo methylation in germ cells but is dispensable for de novo methylation during embryogenesis, which is mainly mediated by DNMT3B. How DNMT3L regulates DNA methylation and what determines its functional specificity are not well understood.

View Article and Find Full Text PDF

As part of the epigenetic network, DNA methylation is a major regulator of chromatin structure and function. In mammals, it mainly occurs at palindromic CpG sites, but asymmetric methylation at non-CpG sites is also observed. Three enzymes are involved in the generation and maintenance of DNA methylation patterns.

View Article and Find Full Text PDF

Discovery of inhibitors for endothelial-related transcription factors can contribute to the development of anti-angiogenic therapies that treat various diseases, including cancer. The role of transcription factor Vezf1 in vascular development and regulation of angiogenesis has been defined by several earlier studies. Through construction of a computational model for Vezf1, work here has identified a novel small molecule drug capable of inhibiting Vezf1 from binding to its cognate DNA binding site.

View Article and Find Full Text PDF

Formation of the vasculature by angiogenesis is critical for proper development, but angiogenesis also contributes to the pathogenesis of various disorders, including cancer and cardiovascular diseases. Vascular endothelial zinc finger 1 (Vezf1), is a Krüppel-like zinc finger protein that plays a vital role in vascular development. However, the mechanism by which Vezf1 regulates this process is not fully understood.

View Article and Find Full Text PDF

DNA methylation is a highly conserved epigenetic modification with critical roles ranging from protection against phage infection in bacteria to the regulation of gene expression in mammals. DNA methylation at specific sequences can be measured by using methylation dependent or sensitive restriction enzymes coupled to semi- or quantitative PCR (MD-qPCR). This study reports a refined MD-qPCR method for detecting gain or loss of DNA methylation at specific sites through the specific use of MspJI or HpaII, respectively.

View Article and Find Full Text PDF

The catalytic domains of the de novo DNA methyltransferases Dnmt3a-C and Dnmt3b-C are highly homologous. However, their unique biochemical properties could potentially contribute to differences in the substrate preferences or biological functions of these enzymes. Dnmt3a-C forms tetramers through interactions at the dimer interface, which also promote multimerization on DNA and cooperativity.

View Article and Find Full Text PDF

Epigenetic mechanisms such as DNA methylation are essential regulators of the function and information storage capacity of neurons. DNA methylation is highly dynamic in the developing and adult brain, and is actively regulated by neuronal activity and behavioural experiences. However, it is presently unclear how methylation status at individual genes is targeted for modification.

View Article and Find Full Text PDF