Bipolar disorder (BD) is a significant neuropsychiatric condition characterized by marked psychological mood disturbances. Despite extensive research on the symptomatology of BD, the mechanisms underlying its development and presentation remain unknown. Consequently, potential treatments are limited, and existing medications often cause significant side effects, leading to treatment discontinuation.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a progressive neurodegenerative disorder. Altered neurogenesis and the appearance of AD pathological hallmarks are fundamental to this disease. SRY-Box transcription factor 2 (Sox2), octamer-binding transcription factor 4 (Oct4), and Nanog are a set of core transcription factors that play a very decisive role in the preservation of pluripotency and the self-renewal capacity of embryonic and adult stem cells.
View Article and Find Full Text PDFMitochondria functionally degrade as neurons age. Degenerative changes cause inefficient oxidative phosphorylation (OXPHOS) and elevated electron leakage from the electron transport chain (ETC) promoting increased intramitochondrial generation of damaging reactive oxygen and reactive nitrogen species (ROS and RNS). The associated progressive accumulation of molecular damage causes an increasingly rapid decline in mitochondrial physiology contributing to aging.
View Article and Find Full Text PDFA nuclear retinoic acid receptor (RAR)-related orphan receptor β (RORβ) is strictly expressed in the brain, particularly in the pineal gland where melatonin is primarily synthesized and concentrated. The controversial issues regarding the direct interaction of melatonin toward ROR receptors have prompted us to investigate the potential melatonin binding sites on different ROR isoforms. We adopted computational and biophysical approaches to investigate the potential of melatonin as the ligand for RORs, in particular RORβ.
View Article and Find Full Text PDFThe beneficial actions of the natural compound Huperzine A (Hup A) against age-associated learning and memory deficits promote this compound as a nootropic agent. Alzheimer's disease (AD) pathophysiology is characterized by the accumulation of amyloid beta (Aβ). Toxic Aβ oligomers account for the cognitive dysfunctions much before the pathological lesions are manifested in the brain.
View Article and Find Full Text PDFStroke and Alzheimer's disease (AD) are prevalent age-related diseases; however, the relationship between these two diseases remains unclear. In this study, we aimed to investigate the ability of melatonin, a hormone produced by the pineal gland, to alleviate the effects of ischemic stroke leading to AD by observing the pathogenesis of AD hallmarks. We utilized SH-SY5Y cells under the conditions of oxygen-glucose deprivation (OGD) and oxygen-glucose deprivation and reoxygenation (OGD/R) to establish ischemic stroke conditions.
View Article and Find Full Text PDFAnalogs of pyrrole alkaloid lamellarins exhibit anticancer activity by modulating multiple cellular events. Lethal doses of several lamellarins were found to enhance autophagy flux in HeLa cells, suggesting that lamellarins may modulate protein homeostasis through the interference of proteins or kinases controlling energy and nutrient metabolism. To further delineate molecular mechanisms and their targets, our results herein show that azalamellarin D (AzaD) cytotoxicity could cause translational attenuation, as indicated by a change in eIF2α phosphorylation.
View Article and Find Full Text PDFViral infections of the central nervous system (CNS) cause variable outcomes from acute to severe neurological sequelae with increased morbidity and mortality. Viral neuroinvasion directly or indirectly induces encephalitis via dysregulation of the immune response and contributes to the alteration of neuronal function and the degeneration of neuronal cells. This review provides an overview of the cellular and molecular mechanisms of virus-induced neurodegeneration.
View Article and Find Full Text PDFAlzheimer's disease (AD) is the most prevalent neurodegenerative disorder. In addition to amyloid beta (Aβ) and tau, neuroinflammation is a crucial element in the etiology of this disease. However, the relevance of inflammasome-induced pyroptosis to AD is unknown.
View Article and Find Full Text PDFThe endoplasmic reticulum (ER) membrane provides infrastructure for intracellular signaling, protein degradation, and communication among the ER lumen, cytosol, and nucleus via transmembrane and membrane-associated proteins. Failure to maintain homeostasis at the ER leads to deleterious conditions in humans, such as protein misfolding-related diseases and neurodegeneration. The ER transmembrane heat shock protein 40 (Hsp40) proteins, including DNAJB12 (JB12) and DNAJB14 (JB14), have been studied for their importance in multiple aspects of cellular events, including degradation of misfolded membrane proteins, proteasome-mediated control of proapoptotic Bcl-2 members, and assembly of multimeric ion channels.
View Article and Find Full Text PDFObesity is well-established as a common comorbidity in ischemic stroke. The increasing evidence has revealed that it also associates with the exacerbation of brain pathologies, resulting in increasingly severe neurological outcomes following cerebral ischemia and reperfusion (I/R) damage. Mechanistically, pyroptosis and necroptosis are novel forms of regulated death that relate to the propagation of inflammatory signals in case of cerebral I/R.
View Article and Find Full Text PDFJapanese encephalitis virus (JEV), a mosquito-borne flavivirus, causes high mortality rates in humans and it is the most clinically important and common cause of viral encephalitis in Asia. To date, there is no specific treatment for JEV infection. Melatonin, a neurotropic hormone, is reported to be effective in combating various bacterial and viral infections.
View Article and Find Full Text PDFChronic cerebral hypoxia (CCH) is caused by a reduction in cerebral blood flow, and cognitive impairment has been the predominant feature that occurs after CCH. Recent reports have revealed that melatonin is proficient in neurodegenerative diseases. However, the molecular mechanism by which melatonin affects CCH remains uncertain.
View Article and Find Full Text PDFUnlabelled: The deficit in cognitive function is more concerning in methamphetamine (MA) users. The cognitive deficit was suspected to be the consequence of neuroinflammation-induced neurological dysregulation. In addition, activating the key enzyme in the tryptophan metabolic pathway by pro-inflammatory cytokines results in metabolite toxicity, further generating cognitive impairments.
View Article and Find Full Text PDFHuman neuronal cells are a more appropriate cell model for neurological disease studies such as Alzheimer and Parkinson's disease. SH-SY5Y neuroblastoma cells have been widely used for differentiation into a mature neuronal cell phenotype. The cellular differentiation process begins with retinoic acid incubation, followed by incubation with brain-derived neurotrophic factor (BDNF), a recombinant protein produced in E.
View Article and Find Full Text PDFAlzheimer's disease (AD) is the most prominent neurodegenerative disease represented by the loss of memory and cognitive impairment symptoms and is one of the major health imperilments among the elderly. Amyloid (Aβ) deposit inside the neuron is one of the characteristic pathological hallmarks of this disease, leading to neuronal cell death. In the amyloidogenic processing, the amyloid precursor protein (APP) is cleaved by beta-secretase and γ-secretase to generate Aβ.
View Article and Find Full Text PDFChronic cerebral hypoperfusion (CCH) is the most common cause of cognitive impairment, which is commonly found in Alzheimer's disease (AD) and vascular dementia (VaD). Recently, studies have demonstrated that melatonin is an effective treatment in various neurodegenerative diseases. In this study, we aimed to investigate the effects of melatonin on CCH-induced AD pathology, endoplasmic reticulum (ER) stress, and synaptic plasticity, all of which are correlated with the activation of oxidative stress, apoptosis, and cognitive impairment.
View Article and Find Full Text PDFNumerous challenges are confronted when it comes to the recognition of therapeutic agents for treating complex neurodegenerative diseases like Alzheimer's disease (AD). The perplexing pathogenicity of AD embodies cholinergic dysfunction, amyloid beta (Aβ) aggregation, neurofibrillary tangle formation, neuroinflammation, mitochondrial disruption along with vicious production of reactive oxygen species (ROS) generating oxidative stress. In this frame of reference, drugs with multi target components could prove more advantageous to counter complex pathological mechanisms that are responsible for AD progression.
View Article and Find Full Text PDFCerebral ischemic stroke is one of the main causes of death and long-term disability worldwide. However, the mechanism is unclear, and treatments are limited. In this study, we aimed to investigate the anti-inflammatory effect of agomelatine in a permanent middle cerebral artery occlusion (pMCAO) model.
View Article and Find Full Text PDFEven though astrocytes have been widely reported to support several brain functions, studies have emerged that they exert deleterious effects on the brain after ischemia and reperfusion (I/R) injury. The present study investigated the neuroprotective effects of melatonin on the processes of reactive astrogliosis and glial scar formation, as well as axonal regeneration after transient middle cerebral artery occlusion. Male Wistar rats were randomly divided into four groups: sham-operated, I/R, I/R treated with melatonin, and I/R treated with edaravone.
View Article and Find Full Text PDFBackground: Agomelatine, a novel antidepressant, is a melatonin MT receptor agonist and serotonin 5HT receptor antagonist. In this study, agomelatine was used to investigate the molecular mechanisms of hippocampal aging associated with endoplasmic reticulum (ER) stress, mitochondrial dysfunction, and apoptosis, all of which led to short-term memory impairment.
Method: Hippocampal aging was induced in male Wistar rats by d-galactose (D-gal) intraperitoneal injection (100 mg/kg) for 14 weeks.
Cancer stem cells (CSCs), a small subpopulation of tumour cells, have properties of self-renewal and multipotency, which drive cancer progression and resistance to current treatments. Compounds potentially targeting CSCs have been recently developed. This study shows how melatonin, an endogenous hormone synthesised by the pineal gland, and its derivative suppress CSC-like phenotypes of human non-small cell lung cancer (NSCLC) cell lines, H460, H23, and A549.
View Article and Find Full Text PDFMethamphetamine (METH) is a psychostimulant drug of abuse. METH use is associated with cognitive impairments and neurochemical abnormalities comparable to pathological changes observed in Alzheimer's disease (AD). These observations have stimulated the idea that METH abusers might be prone to develop AD-like signs and symptoms.
View Article and Find Full Text PDFReprogramming cell fates towards mature cell types are a promising cell supply for treating degenerative diseases. Recently, transcription factors and some small molecules have turned into impressive modulating elements for reprogramming cell fates. Melatonin, a pineal hormone, has neuroprotective functions including neural stem cell (NSC) proliferative and differentiative modulation in both embryonic and adult brain.
View Article and Find Full Text PDF