Polyhalite-based POLY4, a multi-nutrient source containing potassium, calcium, magnesium, and sulphur, is increasingly recognised for its potential to improve crop yields and soil health in agricultural systems. It is also been considered as a feasible approach for addressing the deficiency in potassium, calcium, and sulphur within a single application source. The present study aimed to investigate the impact of polyhalite-based POLY4 application, either as a complete or partial substitute for traditional potassium fertiliser and gypsum supplement, on the improvement of peanut () growth and soil quality.
View Article and Find Full Text PDFThe phosphatidylinositol (PI3K)/AKT/mTOR axis represents an important therapeutic target to treat human cancers. A well-described downstream target of the PI3K pathway is the forkhead box O (FOXO) transcription factor family. FOXOs have been implicated in many cellular responses, including drug-induced resistance in cancer cells.
View Article and Find Full Text PDFMineral and vitamin deficiencies together affect a greater number of human populations in the world than does protein malnutrition. Organic farming is reported to improve nutritional quality of food grains while also improving soil health. However, sufficient scientific information on several aspects of organic farming based on long-term studies is lacking particularly under rainfed conditions of India.
View Article and Find Full Text PDFBy the year 2050, the world's population is predicted to have grown to around 9-10 billion people. The food demand in many countries continues to increase with population growth. Various abiotic stresses such as temperature, soil salinity and moisture all have an impact on plant growth and development at all levels of plant growth, including the overall plant, tissue cell, and even sub-cellular level.
View Article and Find Full Text PDFMucinous colorectal adenocarcinomas (MCAs) are clinically and morphologically distinct from nonmucinous colorectal cancers (CRCs), show a distinct spectrum of genetic alterations (higher KRAS mutations, lower p53, high MUC2), exhibit more aggressive behavior (more prone to peritoneal dissemination and lymph node involvement) and are associated with poorer response to chemotherapy with limited treatment options. Here, we report the effectiveness of combinatorial targeting of two KRAS-mediated parallel pathways in reducing MUC2 production and mucinous tumor growth in vitro and in vivo. By knockdown of mutant KRAS we show that, mutant KRAS (a) is necessary for MUC2 production in vitro and (b) synergistically engages PI3K/AKT and MEK/ERK pathways to maintain MUC2 expression in MCA cells.
View Article and Find Full Text PDFPseudomyxoma peritonei (PMP) is a neoplastic syndrome characterized by peritoneal tumor implants with copious mucinous ascites. The standard of care for PMP patients is aggressive cytoreductive surgery performed in conjunction with heated intraperitoneal chemotherapy. Not all patients are candidates for these procedures and a majority of the patients will have recurrent disease.
View Article and Find Full Text PDFBackground: Malignant peritoneal mesothelioma (MPM) is a rare cancer arising from mesothelial cells lining the peritoneal surface. Little is known about the tumor microenvironment in regulating MPM oncogenesis. The current study defined the chemokine/cytokine expression profile and inflammatory responses within the MPM microenvironment.
View Article and Find Full Text PDFThe C-terminal Eps15 homology domain-containing (EHD) proteins play a key role in endocytic recycling, a fundamental cellular process that ensures the return of endocytosed membrane components and receptors back to the cell surface. To define the in vivo biological functions of EHD1, we have generated Ehd1 knockout mice and previously reported a requirement of EHD1 for spermatogenesis. Here, we show that approximately 56% of the Ehd1-null mice displayed gross ocular abnormalities, including anophthalmia, aphakia, microphthalmia and congenital cataracts.
View Article and Find Full Text PDFDiffuse malignant peritoneal mesothelioma is a rare, aggressive disease. Cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC) have improved outcomes where systemic chemotherapy has not succeeded. In this study, we compare outcomes of patients treated with mitomycin or carboplatin as perfusate.
View Article and Find Full Text PDFThe nomenclature and classification of pseudomyxoma peritonei (PMP) is confusing and controversial. Numerous classification systems have been proposed, none of which are easily reproducible or a useful guide for treatment. Patients with PMP of appendiceal origin were identified from our institution's database.
View Article and Find Full Text PDFSproutys (Sprys) are downstream targets and negative feedback regulators of the FGF-Ras-ERK signaling pathway. Our previous studies have shown that Spry1 and Spry2, through negative modulation of FGF-ERK signaling, allow lens vesicle separation from the overlying ectoderm and regulate corneal epithelial proliferation. Here we show that Spry1 and Spry2 are necessary for eyelid closure.
View Article and Find Full Text PDFBackground: Pseudomyxoma peritonei (PMP), a peritoneal mucinous neoplasm of appendiceal origin, is associated with inflammation and fibrosis, which is central to its biology. The significance of the microenvironment in PMP has not been well characterized.
Methods: Immunoassays were used to measure cytokines and C-reactive protein (CRP).
Lens induction is a classical embryologic model to study cell fate determination. It has been proposed earlier that specific changes in core histone modifications accompany the process of cell fate specification and determination. The lysine acetyltransferases CBP and p300 function as principal enzymes that modify core histones to facilitate specific gene expression.
View Article and Find Full Text PDFBackground: Little information exists on Kras mutations and p53 overexpression in pseudomyxoma peritonei (PMP). These genetic alterations are associated with poorer prognoses in colorectal cancer. We postulated that these mutations might be more frequent in high-grade (HG) PMP (peritoneal mucinous carcinomatosis) versus low-grade (LG) PMP (disseminated peritoneal adenomucinosis/peritoneal mucinous carcinomatosis), for which survival differences are well documented.
View Article and Find Full Text PDFPurpose: The studies reported here were performed to analyze the roles of Sproutys (Sprys), downstream targets and negative feedback regulators of the fibroblast growth factor (FGF) signaling pathway, in lens and corneal differentiation.
Methods: Spry1 and -2 were conditionally deleted in the lens and corneal epithelial precursors using the Le-Cre transgene and floxed alleles of Spry1 and -2. Alterations in lens and corneal development were assessed by hematoxylin and eosin staining, in situ hybridization, and immunohistochemistry.
Background: There is a paucity of information about the molecular perturbations involved in MPM tumor formation. We previously reported that EGFR-TK mutations in MPM were predictive of achieving optimal surgical cytoreduction, but the status of EGFR pathway activation potential of these mutations was not known. Here we present the mutant EGFR activating potential and the matured survival data of the EGFR mutant(mut+) relative to wild type EGFR(mut-) mesothelioma.
View Article and Find Full Text PDFBackground: The C-terminal Eps15 homology domain-containing protein 1 (EHD1) is ubiquitously expressed and regulates the endocytic trafficking and recycling of membrane components and several transmembrane receptors. To elucidate the function of EHD1 in mammalian development, we generated Ehd1-/- mice using a Cre/loxP system.
Results: Both male and female Ehd1-/- mice survived at sub-Mendelian ratios.
Background: Mammalian Ras genes regulate diverse cellular processes including proliferation and differentiation and are frequently mutated in human cancers. Tumor development in response to Ras activation varies between different tissues and the molecular basis for these variations are poorly understood. The murine lens and cornea have a common embryonic origin and arise from adjacent regions of the surface ectoderm.
View Article and Find Full Text PDFMethods Find Exp Clin Pharmacol
October 2008
There is evidence that isoprostanes (IsoPs) can regulate exogenously applied excitatory amino acid neurotransmitters in bovine retina in vitro. However, the regulation of retinal morphology and endogenous neurotransmitter levels by IsoPs is unknown. We examined the effects of intravitreally injected 8-iso-PGE(2) on retinal tissue integrity and viability and amino acid neurotransmitters in bovine eye organ culture ex vivo.
View Article and Find Full Text PDFThe lens in the vertebrate eye has been shown to be critical for proper differentiation of the surrounding ocular tissues including the cornea, iris and ciliary body. In mice, previous investigators have assayed the consequences of molecular ablation of the lens. However, in these studies, lens ablation was initiated (and completed) after the cornea, retina, iris and ciliary body had initiated their differentiation programs thereby precluding analysis of the early role of the lens in fate determination of these tissues.
View Article and Find Full Text PDFPurpose: The purpose of this study was to reassess the role of the lens as an "embryonic organizer" of ocular tissues.
Methods: We ablated the lens in mice by lens-specific expression of an attenuated version of diphtheria toxin A subunit(Tox176) driven by a modified crystallin promoter. Alterations in the differentiation programs of ocular tissues were examined by hematoxylin and eosin staining, in situ hybridization, and immunohistochemistry.
Background: The flat bones of the skull (i.e., the frontal and parietal bones) normally form through intramembranous ossification.
View Article and Find Full Text PDFPurpose: The purpose of this study was to establish a GAL4/VP16-based binary transactivation system that was active in the lens and corneal epithelium of transgenic mice.
Methods: We generated transgenic mice with the transcriptional transactivator GAL4/VP16 driven by a modified Pax6 promoter that is active in lens and corneal epithelial cells. We also generated and tested UAS-lacZ reporter mice.
Growth factor signaling is implicated in the regulation of lens cell proliferation and differentiation during development. Activation of growth factor receptor tyrosine kinases is known to activate Ras proteins, small GTP-binding proteins that function as part of the signal transduction machinery. In the present study, we examined which classical Ras genes are expressed in lens cells during normal development and whether expression of an activated version of Ras is sufficient to induce either lens cell proliferation or fiber cell differentiation in transgenic mice.
View Article and Find Full Text PDF