Plant Physiol Biochem
November 2024
Nilgirianthus ciliatus, extensively exploited for its pharmacological properties, is now classified as vulnerable. In vitro micropropagation offers a sustainable approach for ecological conservation and rational utilization of this biodiversity resource. This study aimed to reduce endophytes during in vitro propagation and isolating antimicrobial-resistant endophytes from N.
View Article and Find Full Text PDFCardiac myosin binding protein-C (cMyBP-C) phosphorylation is essential for normal heart function and protects the heart from ischemia-reperfusion (I/R) injury. It is known that protein kinase-A (PKA)-mediated phosphorylation of cMyBP-C prevents I/R-dependent proteolysis, whereas dephosphorylation of cMyBP-C at PKA sites correlates with its degradation. While sites on cMyBP-C associated with phosphorylation and proteolysis co-localize, the mechanisms that link cMyBP-C phosphorylation and proteolysis during cardioprotection are not well understood.
View Article and Find Full Text PDFCardiac myosin binding protein-C (cMyBP-C) is a heart muscle-specific thick filament protein. Elevated level of serum cMyBP-C is an indicator of early myocardial infarction (MI), but its value as a predictor of future cardiovascular disease is unknown. Based on the presence of significant amount of cMyBP-C in the serum of previous study subjects independent of MI, we hypothesized that circulating cMyBP-C is a sensitive indicator of ongoing cardiovascular stress and disease.
View Article and Find Full Text PDFBackground: The geometric organization of myocytes in the ventricular wall comprises the structural underpinnings of cardiac mechanical function. Cardiac myosin binding protein-C (MYBPC3) is a sarcomeric protein, for which phosphorylation modulates myofilament binding, sarcomere morphology, and myocyte alignment in the ventricular wall. To elucidate the mechanisms by which MYBPC3 phospho-regulation affects cardiac tissue organization, we studied ventricular myoarchitecture using generalized Q-space imaging (GQI).
View Article and Find Full Text PDFCardiomyopathies can result from mutations in genes encoding sarcomere proteins including MYBPC3, which encodes cardiac myosin binding protein-C (cMyBP-C). However, whether oxidative stress is augmented due to contractile dysfunction and cardiomyocyte damage in MYBPC3-mutated cardiomyopathies has not been elucidated. To determine whether oxidative stress markers were elevated in MYBPC3-mutated cardiomyopathies, a previously characterized 3-month-old mouse model of dilated cardiomyopathy (DCM) expressing a homozygous MYBPC3 mutation (cMyBP-C((t/t))) was used, compared to wild-type (WT) mice.
View Article and Find Full Text PDFBackground: Pharmacological activation of cGMP-dependent protein kinase G I (PKGI) has emerged as a therapeutic strategy for humans with heart failure. However, PKG-activating drugs have been limited by hypotension arising from PKG-induced vasodilation. PKGIα antiremodeling substrates specific to the myocardium might provide targets to circumvent this limitation, but currently remain poorly understood.
View Article and Find Full Text PDFβ-Adrenergic stimulation in heart leads to increased contractility and lusitropy via activation of protein kinase A (PKA). In the cardiac sarcomere, both cardiac myosin binding protein C (cMyBP-C) and troponin-I (cTnI) are prominent myofilament targets of PKA. Treatment of permeabilized myocardium with PKA induces enhanced myofilament length-dependent activation (LDA), the cellular basis of the Frank-Starling cardiac regulatory mechanism.
View Article and Find Full Text PDFHypertrophic cardiomyopathy (HCM) results from mutations in genes encoding sarcomeric proteins, most often MYBPC3, which encodes cardiac myosin binding protein-C (cMyBP-C). A recently discovered HCM-associated 25-base pair deletion in MYBPC3 is inherited in millions worldwide. Although this mutation causes changes in the C10 domain of cMyBP-C (cMyBP-C(C10mut)), which binds to the light meromyosin (LMM) region of the myosin heavy chain, the underlying molecular mechanism causing HCM is unknown.
View Article and Find Full Text PDFMyocardial infarction (MI) is associated with depressed cardiac contractile function and progression to heart failure. Cardiac myosin-binding protein C, a cardiac-specific myofilament protein, is proteolyzed post-MI in humans, which results in an N-terminal fragment, C0-C1f. The presence of C0-C1f in cultured cardiomyocytes results in decreased Ca(2+) transients and cell shortening, abnormalities sufficient for the induction of heart failure in a mouse model.
View Article and Find Full Text PDFBiomarkers are becoming increasingly more important in clinical decision-making, as well as basic science. Diagnosing myocardial infarction (MI) is largely driven by detecting cardiac-specific proteins in patients' serum or plasma as an indicator of myocardial injury. Having recently shown that cardiac myosin binding protein-C (cMyBP-C) is detectable in the serum after MI, we have proposed it as a potential biomarker for MI.
View Article and Find Full Text PDFMyosin binding protein-C (MyBP-C) exists in three major isoforms: slow skeletal, fast skeletal, and cardiac. While cardiac MyBP-C (cMyBP-C) expression is restricted to the heart in the adult, it is transiently expressed in neonatal stages of some skeletal muscles. However, it is unclear whether this expression is necessary for the proper development and function of skeletal muscle.
View Article and Find Full Text PDFEarlier studies have shown that cardiac myosin binding protein-C (cMyBP-C) is easily releasable into the circulation following myocardial infarction (MI) in animal models and patients. However, since its release kinetics has not been clearly demonstrated, no parameters are available to judge its efficacy as a bona fide biomarker of MI in patients with MI. To make this assessment, plasma levels of cMyBP-C and six known biomarkers of MI were determined by sandwich enzyme-linked immunosorbent assay in patients with MI who had before and after Percutaneous Transcoronary Angioplasty (PTCA), as well as healthy controls.
View Article and Find Full Text PDFCardiac myosin binding protein-C (cMyBP-C) plays a role in sarcomeric structure and stability, as well as modulating heart muscle contraction. The 150 kDa full-length (FL) cMyBP-C has been shown to undergo proteolytic cleavage during ischemia-reperfusion injury, producing an N-terminal 40 kDa fragment (mass 29 kDa) that is predominantly associated with post-ischemic contractile dysfunction. Thus far, the pathogenic properties of such truncated cMyBP-C proteins have not been elucidated.
View Article and Find Full Text PDFActa Crystallogr Sect E Struct Rep Online
March 2012
In the title compound, C(17)H(14)N(2)O(2), the hy-droxy-ethanimine group adopts an anti-periplanar conformation. In the crystal, mol-ecules are linked by O-H⋯N hydrogen bonds, forming zigzag chains running along the c axis.
View Article and Find Full Text PDFCardiac myosin binding protein-C (cMyBP-C) is a thick filament assembly protein that stabilizes sarcomeric structure and regulates cardiac function; however, the profile of cMyBP-C degradation after myocardial infarction (MI) is unknown. We hypothesized that cMyBP-C is sensitive to proteolysis and is specifically increased in the bloodstream post-MI in rats and humans. Under these circumstances, elevated levels of degraded cMyBP-C could be used as a diagnostic tool to confirm MI.
View Article and Find Full Text PDFAim Of The Study: The aim of this study is to determine and identify the possible molecular mechanisms of anti-cancer effect of rhubarb under the physiologically achievable concentrations by using an ex vivo approach.
Materials And Methods: Rats were orally administered rhubarb decoction and then serum metabolites were extracted, prepared and characterized to assay for the following in vitro study. The MTT assay, zymography analysis, wound healing assay, RT-PCR, and Western blot analysis were used to reveal molecular events of rhubarb metabolites in this study.
The EzrA protein of Bacillus subtilis is a negative regulator for FtsZ (Z)-ring formation. It is able to modulate the frequency and position of Z-ring formation during cell division. The loss of this protein results in cells with multiple Z rings located at polar as well as medial sites; it also lowers the critical concentration of FtsZ required for ring formation (P.
View Article and Find Full Text PDF