Publications by authors named "Govind Prasad Agrawal"

Objective: Receptor-based tumor-selective delivery of therapeutic efficacy and therapeutic index of cytotoxic drugs that exhibit dose-limiting toxicity is observed. Concanavalin A (Con A) was selected as the ligand for the proposed system, which was appended to the polycaprolactone nanoparticles (NPs) carrying the drug to be a very efficient approach for the treatment of cancer.

Methods: Preparation of plain polycaprolactone nanoparticles was carried out employing the emulsion diffusion evaporation technique.

View Article and Find Full Text PDF

Environmental and individual risk factors make leishmaniasis an important public health problem. Presently, there are several medicines existing for the cure of leishmaniasis, but a major problem associated with them is their adverse effects. The affinity to the fucose receptor increases the phagocytosis of ligand-bound carriers and simultaneously targets the delivery of the antileishmanial agent.

View Article and Find Full Text PDF

Context: Surface-modified pH-sensitive liposomal system may be useful for intracellular delivery of chemotherapeutics.

Objective: Achieving site-specific targeting with over-expressed hyaluronic acid (HA) receptors along with using pH sensitive liposome carrier for intracellular drug delivery was the aim of this study.

Materials And Methods: Stealth HA-targeted pH-sensitive liposomes (SL-pH-HA) were developed and evaluated to achieve effective intracellular delivery of doxorubicin (DOX) vis-a-vis enhanced antitumor activity.

View Article and Find Full Text PDF

Some specific types of tumor cells and tumor endothelial cells represented CD13 proteins and act as receptors for Asn-Gly-Arg (NGR) motifs containing peptide. These CD13 receptors can be specifically recognized and bind through the specific sequence of cyclic NGR (cNGR) peptide and presented more affinity and specificity toward them. The cNGR peptide was conjugated to the poly(ethylene glycol) (PEG) terminal end in the poly(lactic-co-glycolic) acid PLGA-PEG block copolymer.

View Article and Find Full Text PDF

The mannosylated gelatin nanoparticles (Mn-GNPs) were prepared for the selective delivery of an antitubercular drug, isoniazid (INH), to the alveolar macrophages. The gelatin nanoparticles (GNPs) were prepared by using a two-step desolvation method and efficiently conjugated with mannose. Various parameters such as particle size, polydispersity index, zeta potential, % entrapment efficiency, in vitro drug release, macrophage uptake, in vivo biodistribution, antitubercular activity and hepatotoxicity of plain and Mn-GNPs were determined.

View Article and Find Full Text PDF

A novel hyaluronic acid-poly(ethylene glycol)-poly(lactide-co-glycolide) (HA-PEG-PLGA) copolymer was synthesized and characterized by infrared and nuclear magnetic resonance spectroscopy. The nanoparticles of doxorubicin (DOX)-loaded HA-PEG-PLGA were prepared and compared with monomethoxy(polyethylene glycol) (MPEG)-PLGA nanoparticles. Nanoparticles were prepared using drug-to-polymer ratios of 1:1 to 1:3.

View Article and Find Full Text PDF

Cells of the mononuclear phagocyte system (MPS) are important hosts for human immunodeficiency virus (HIV). Lectin receptors, which act as molecular targets for sugar molecules, are found on the surface of these cells of the MPS. Stavudine-loaded mannosylated liposomal formulations were developed for targeting to HIV-infected cells.

View Article and Find Full Text PDF