Binding of plasminogen (Pg) to cell-surface receptors colocalized with plasminogen activators promotes Pg activation and enables cells to utilize the proteolytic activity of plasmin (Pm). Proteolysis by Pm is necessary in several physiological and pathological processes requiring extracellular matrix degradation including cell migration, tumor cell invasion and metastasis. The binding of Pg to cell-surface receptors is regulated by two major structural features: L-lysine binding sites (LBS) and negatively charged sialic acid residues located on its carbohydrate chains.
View Article and Find Full Text PDFCirculating autoantibodies against the glucose-regulated protein of 78 kDa (GRP78) are present at high levels in prostate cancer patients and are a biomarker of aggressive tumor behavior. We purified the anti-GRP78 IgGs and examined their effect on 1-LN, PC-3, DU145, and LnCap human prostate cancer cells. We also evaluated its effects on the breast cancer MDA-MB231 and melanoma DM413 cell lines.
View Article and Find Full Text PDFBinding of plasminogen type II (Pg 2) to dipeptidyl peptidase IV (DPP IV) on the surface of the highly invasive 1-LN human prostate tumor cell line induces an intracellular Ca2+ ([Ca2+]i) signaling cascade accompanied by a rise in intracellular pH (pHi). In endothelial cells, Pg 2 regulates intracellular pH via Na+/H+ exchange (NHE) antiporters; however, this mechanism has not been demonstrated in any other cell type including prostate cancer cells. Because the Pg 2 receptor DPP IV is associated with NHE3 in kidney cell plasma membranes, we investigated a similar association in 1-LN human prostate cancer cells and a mechanistic explanation for changes in [Ca2+]i or pHi induced by Pg 2 in these cells.
View Article and Find Full Text PDFMTJ-1 associates with a glucose-regulated protein of Mr approximately 78,000(GRP78) in the endoplasmic reticulum and modulates GRP78 activity as a chaperone. GRP78 also exists on the cell surface membrane, where it is associated with a number of functions. MHC class I Ags on the cell surface are complexed to GRP78.
View Article and Find Full Text PDFPrevious studies demonstrate that one of the six plasminogen type 2 glycoforms, plasminogen 2epsilon, enhances invasiveness of the 1-LN human prostate tumor cell line in an in vitro model. Binding of plasminogen 2epsilon to CD26 on the cell surface induces a Ca(2+) signaling cascade which stimulates the expression of matrix metalloproteinase-9, required by these cells to invade Matrigel. We now report that angiostatin, a fragment derived from plasminogen which prevents endothelial cell proliferation, is also a potent, direct inhibitor of 1-LN tumor cell invasiveness.
View Article and Find Full Text PDFPurpose: To investigate the role of lysophospholipid growth factors in the regulation of aqueous humor outflow in the trabecular meshwork (TM).
Methods: The expression profile of the endothelial differentiation gene (Edg) family of G-protein coupled receptors was determined by RT-PCR of human TM (HTM) cell-derived total RNA and by PCR amplification of HTM cell-derived and tissue-derived cDNA libraries. The effects of lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) on actin cytoskeleton and focal adhesions and on myosin light-chain (MLC) phosphorylation in HTM cells were evaluated by immunofluorescence microscopy and Western blot analysis, respectively.
The activated proteinase inhibitor alpha2-macroglobulin (alpha2M*) binds to two receptors, the low density lipoprotein receptor-related protein (LRP-1) and the alpha2M* signalling receptor (alpha2MSR). Silencing LRP-1 gene expression in macrophages by RNA interference does not block alpha2M* activation of signalling cascades. We now demonstrate that transfection of macrophages with a double-stranded RNA homologous in sequence to the Grp78 gene markedly decreased induction of inositol 1,4,5-trisphosphate (IP3) and subsequent IP3-dependent elevation of [Ca2+]i induced by alpha2M*.
View Article and Find Full Text PDFCadmium exposure increases the risk of prostate cancer. We now describe the effects of Cd2+ on signalling and proliferation in 1LN prostate cells. Cd2+ increased [3H]thymidine uptake and cell number twofold.
View Article and Find Full Text PDFHuman plasminogen contains structural domains that are termed kringles. Proteolytic cleavage of plasminogen yields kringles 1-3 or 4 and kringle 5 (K5), which regulate endothelial cell proliferation. The receptor for kringles 1-3 or 4 has been identified as cell surface-associated ATP synthase; however, the receptor for K5 is not known.
View Article and Find Full Text PDFThe low density lipoprotein receptor-related protein (LRP) is a scavenger receptor that binds to many proteins, some of which trigger signal transduction. Receptor-recognized forms of alpha(2)-Macroglobulin (alpha(2)M*) bind to LRP, but the pattern of signal transduction differs significantly from that observed with other LRP ligands. For example, neither Ni(2+) nor the receptor-associated protein, which blocks binding of all known ligands to LRP, block alpha(2)M*-induced signal transduction.
View Article and Find Full Text PDFTissue factor (TF), the initiator of the extrinsic pathway of coagulation, binds plasminogen (Pg) with high affinity through an interaction between kringles 1-3 of Pg and the extracellular domain of TF. We investigated the binding of Pg type 1 (Pg 1) and Pg type 2 (Pg 2) to highly invasive, TF-expressing, 1-LN human prostate tumor cells and to TF isolated from 1-LN cell membranes. Pg 1, containing both N-linked and O-linked oligosaccharide chains, bound to isolated TF with high affinity, whereas Pg 2, containing only one O-linked oligosaccharide chain, did not bind to TF.
View Article and Find Full Text PDFWe studied the effect of beryllium fluoride on murine peritoneal macrophages and determined its effects on signal transduction and genetic regulation. At low concentration (1-5 nM), BeF(2) caused an approximate twofold increase in [(3)H]thymidine uptake and cell number, but above 5 nM, it showed cytotoxic effects. BeF(2) increased cellular inositol (1,4,5)trisphosphate (IP(3)) and [Ca(2)(+)](i) about twofold.
View Article and Find Full Text PDFCd(2+) exposure increases the risk of cancer in humans and animals. In this report, we have studied the effect of Cd(2+) on signal transduction and Ca(2+) mobilization in murine macrophages. At micromolar concentrations, Cd(2+) significantly increased cell division as judged by [3H]thymidine uptake and cell counts.
View Article and Find Full Text PDF