Publications by authors named "Govinal Badiger Bhaskara"

Article Synopsis
  • - Despite advancements in treatment, multiple myeloma (MM) is still an incurable cancer, with gaps in understanding the epigenetic mechanisms that contribute to its development and progression.
  • - The study focuses on the SAGA complex, particularly the ADA2B subunit, which plays a critical role in regulating key pathways like MTORC1 signaling and oncogenic programs associated with transcription factors MYC, E2F, and MAF.
  • - The research reveals that targeting SAGA's KAT module and its interaction with specific acetyltransferases could present new therapeutic vulnerabilities in MM, potentially leading to future treatment strategies.
View Article and Find Full Text PDF

Despite recent advances in therapeutic treatments, multiple myeloma (MM) remains an incurable malignancy. Epigenetic factors contribute to the initiation, progression, relapse, and clonal heterogeneity in MM, but our knowledge on epigenetic mechanisms underlying MM development is far from complete. The SAGA complex serves as a coactivator in transcription and catalyzes acetylation and deubiquitylation.

View Article and Find Full Text PDF

The evolution of gene expression is thought to be an important mechanism of local adaptation and ecological speciation. Gene expression divergence occurs through the evolution of cis- polymorphisms and through more widespread effects driven by trans-regulatory factors. Here, we explore expression and sequence divergence in a large sample of Panicum hallii accessions encompassing the species range using a reciprocal transplantation experiment.

View Article and Find Full Text PDF
Article Synopsis
  • Soil salinity negatively affects plant growth, but coastal plant populations may adapt better to salty conditions compared to inland populations, showcasing the potential for local adaptation.
  • Research showed that coastal genotypes had less growth reduction and better ion balance (sodium and potassium) when exposed to salinity compared to inland genotypes, indicating genetic variation in salinity responses.
  • Genome-wide analysis revealed key genes involved in ion transport that are overexpressed in coastal plants, suggesting these mechanisms help them maintain salt balance and open up possibilities for breeding more resilient plants in the face of climate change.
View Article and Find Full Text PDF

Water-use efficiency (WUE) is the ratio of biomass produced per unit of water consumed; thus, it can be altered by genetic factors that affect either side of the ratio. In the present study, we exploited natural variation for WUE to discover loci affecting either biomass accumulation or water use as factors affecting WUE. Genome-wide association studies (GWAS) using integrated WUE measured through carbon isotope discrimination (δC) of accessions identified genomic regions associated with WUE.

View Article and Find Full Text PDF

During moderate severity drought and low water potential (ψw) stress, poorly understood signaling mechanisms restrict both meristem cell division and subsequent cell expansion. We found that the Arabidopsis thaliana Clade E Growth-Regulating 2 (EGR2) protein phosphatase and Microtubule-Associated Stress Protein 1 (MASP1) differed in their stoichiometry of protein accumulation across the root meristem and had opposing effects on root meristem activity at low ψw. Ectopic MASP1 or EGR expression increased or decreased, respectively, root meristem size and root elongation during low ψw stress.

View Article and Find Full Text PDF

Protein phosphorylation is a key signalling mechanism and has myriad effects on protein function. Phosphorylation by protein kinases can be reversed by protein phosphatases, thus allowing dynamic control of protein phosphorylation. Although this may suggest a straightforward kinase-phosphatase relationship, plant genomes contain five times more kinases than phosphatases.

View Article and Find Full Text PDF

The clade A protein phosphatase 2C Highly ABA-Induced 1 (HAI1) plays an important role in stress signaling, yet little information is available on HAI1-regulated phosphoproteins. Quantitative phosphoproteomics identified phosphopeptides of increased abundance in in unstressed plants and in plants exposed to low-water potential (drought) stress. The identity and localization of the phosphoproteins as well as enrichment of specific phosphorylation motifs indicated that these phosphorylation sites may be regulated directly by HAI1 or by HAI1-regulated kinases including mitogen-activated protein kinases, sucrose non-fermenting-related kinase 2, or casein kinases.

View Article and Find Full Text PDF

Plant growth is coordinated with environmental factors, including water availability during times of drought. Microtubules influence cell expansion; however, the mechanisms by which environmental signals impinge upon microtubule organization and whether microtubule-related factors limit growth during drought remains unclear. We found that three () Type 2C protein phosphatases act as negative growth regulators to restrain growth during drought.

View Article and Find Full Text PDF

Little is known about cytoplasmic osmoregulatory mechanisms in plants, and even less is understood about how the osmotic properties of the cytoplasm and organelles are coordinately regulated. We have previously shown that Arabidopsis (Arabidopsis thaliana) plants lacking functional versions of the plastid-localized mechanosensitive ion channels Mechanosensitive Channel of Small Conductance-Like2 (MSL2) and MSL3 contain leaf epidermal plastids under hypoosmotic stress, even during normal growth and development. Here, we use the msl2 msl3 mutant as a model to investigate the cellular response to constitutive plastid osmotic stress.

View Article and Find Full Text PDF

A novel, alkali-tolerant halophilic bacterium-OKH with an ability to produce extracellular halophilic, alkali-tolerant, organic solvent stable, and moderately thermostable xylanase was isolated from salt salterns of Mithapur region, Gujarat, India. Identification of the bacterium was done based upon biochemical tests and 16S rRNA sequence. Maximum xylanase production was achieved at pH 9.

View Article and Find Full Text PDF

Six Arabidopsis (Arabidopsis thaliana) clade A protein phosphatase 2Cs (PP2Cs) have established abscisic acid (ABA) signaling roles; however, phenotypic roles of the remaining three "HAI" PP2Cs, Highly ABA-Induced1 (HAI1), AKT1-Interacting PP2C1/HAI2, and HAI3, have remained unclear. HAI PP2C mutants had enhanced proline and osmoregulatory solute accumulation at low water potential, while mutants of other clade A PP2Cs had no or lesser effect on these drought resistance traits. hai1-2 also had increased expression of abiotic stress-associated genes, including dehydrins and late embryogenesis abundant proteins, but decreased expression of several defense-related genes.

View Article and Find Full Text PDF

Synopsis of recent research by authors named "Govinal Badiger Bhaskara"

  • Govinal Badiger Bhaskara's research primarily focuses on the molecular and genetic mechanisms underlying plant adaptation to environmental stresses, as well as the epigenetic factors contributing to oncogenesis in multiple myeloma.
  • His recent studies highlight the role of the SAGA acetyltransferase module in maintaining oncogenic gene expression in multiple myeloma, suggesting that epigenetic modulation may be crucial for therapeutic approaches.
  • Additionally, he explores gene expression divergence and the evolutionary adaptations of plant species to salinity and drought stress, providing insights into ecological speciation and growth efficiency under challenging conditions.