Publications by authors named "Govil Patil"

Dolomite is a natural mineral of great industrial importance and used worldwide, thus millions of workers are at risk of occupational exposure. Its toxicity is however, meagerly documented. In the present investigation, a dolomite powder obtained from its milling unit was analyzed by some standard methods namely, optical microscopy, transmission electron microscopy and dynamic light scattering.

View Article and Find Full Text PDF

Occupational exposure of granite workers is well known to cause lung impairment and silicosis. Toxicological profiles of different size particles of granite dust, however, are not yet understood. Present evaluation of micro- and nano-particles of granite dust as on human lung fibroblast cells IMR-90, revealed that their toxic effects were dose-dependent, and nanoparticles in general were more toxic.

View Article and Find Full Text PDF

Autophagy has attracted a great deal of research interest in tumor therapy in recent years. An attempt was made in this direction and now we report that iron oxide NPs synthesized by us selectively induce autophagy in cancer cells (A549) and not in normal cells (IMR-90). It was also noteworthy that autophagy correlated with ROS production as well as mitochondrial damage.

View Article and Find Full Text PDF

The risk of occupational exposure to dolomite, an important mineral exists both in organized as well as unorganized sectors. Toxicological profiles of bulk dolomite are meagerly known in general and its nanotoxicity in particular. Effects of micro- and nano particles on cell viability, LDH leakage and markers of oxidative stress were observed.

View Article and Find Full Text PDF

Particle size reduction of talc from micro- to nanoscale gradually enhanced its cytotoxicity however its inflammatory potential is still not explored. In the current study we observed increased TNF-alpha, IL-1beta and IL-6 mRNA levels in macrophages exposed to Nano-Talc (NT). Further, NT particles also showed constituent phosphorylation of both p38 and ERK1/2 pathway however JNK phosphorylation was transient.

View Article and Find Full Text PDF

In this in vitro study we investigated the toxic responses in hepatocytes treated with occupational dust to which workers are exposed in bone-based industrial units. The present study investigated the toxicity mechanism of bone-based occupational dust, from a particular industrial unit, on isolated rat hepatocytes. The hepatocytes were isolated by collagenase perfusion method and cell viability was determined by trypan blue exclusion and MTT [3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide] assay treated with occupational dust at 0.

View Article and Find Full Text PDF

Though, oxidative stress has been implicated in silica nanoparticles induced toxicity both in vitro and in vivo, but no similarities exist regarding dose-response relationship. This discrepancy may, partly, be due to associated impurities of trace metals that may present in varying amounts. Here, cytotoxicity and oxidative stress parameters of two sizes (10 nm and 80 nm) of pure silica nanoparticles was determined in human lung epithelial cells (A549 cells).

View Article and Find Full Text PDF

Talc particles, the basic ingredient in different kinds of talc-based cosmetic and pharmaceutical products, pose a health risk to pulmonary and ovarian systems due to domestic and occupational exposures. Two types of talc nanoparticles depending on the source of geographical origin - indigenous- and commercial talc nanoparticles were assessed for their potential in vitro toxicity on A(549) cells; along with indigenous conventionally used microtalc particles. Cell viability, determined through live/dead staining and 3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, decreased as a function of concentration, origin and size of particles.

View Article and Find Full Text PDF