Recently, researchers have been investigating artificial ferroelectricity, which arises when inversion symmetry is broken in certain R-stacked, i.e., zero-degree twisted, van der Waals (vdW) bilayers.
View Article and Find Full Text PDFFerroelectric all-inorganic halide perovskite nanocrystals with both spontaneous polarization and visible light absorption are promising candidates for designing ferroelectric photovoltaic applications. It remains a challenge to realize ferroelectric photovoltaic devices with all-inorganic halide perovskites that can be operated in the absence of an external electric field. Here we report that a popular all-inorganic halide perovskite nanocrystal, CsPbBr, exhibits a ferroelectricity-driven photovoltaic effect under visible light in the absence of an external electric field.
View Article and Find Full Text PDFCsPbBr exhibits outstanding optoelectronic properties and thermal stability, making it a coveted material for detectors, light-emitting diodes, and solar cells. Despite observations of ferroelectricity in CsPbBr quantum dots, synthesizing bulk ferroelectric CsPbBr crystals has remained elusive, hindering its potential in next-generation optoelectronic devices like optical switches and ferroelectric photovoltaics. Here, a breakthrough is reported: a novel solvothermal technique enabling the growth of ferroelectric CsPbBr nanoplatelets with lateral dimensions in the tens of micrometers.
View Article and Find Full Text PDFAt near-parallel orientation, twisted bilayers of transition metal dichalcogenides exhibit interlayer charge transfer-driven out-of-plane ferroelectricity. Here, we report detailed electrical transport in a dual-gated graphene field-effect transistor placed on a 2.1° twisted bilayer WSe.
View Article and Find Full Text PDFModern technology demands miniaturization of electronic components to build small, light, and portable devices. Hence, discovery and synthesis of new non-toxic, low cost, ultra-thin ferroelectric materials having potential applications in various electronic and optoelectronic devices are of paramount importance. However, achieving room-temperature ferroelectricity in two dimensional (2D) ultra-thin systems remains a major challenge as conventional three-dimensional ferroelectric materials lose their ferroelectricity when the thickness is brought down below a critical value owing to the depolarization field.
View Article and Find Full Text PDFClean water is a fundamental human right but millions struggle for it daily. Herein, we demonstrate a new piezo-photocatalyst with immense structural diversity for universal wastewater decontamination. Single-crystalline BiTaOCl nanoplates with exposed piezoelectric facets exhibit visible-light response, piezoelectric behavior with coercive voltages of ±5 V yielding 0.
View Article and Find Full Text PDFPiezocatalytic water splitting is an emerging approach to generate "green hydrogen" that can address several drawbacks of photocatalytic and electrocatalytic approaches. However, existing piezocatalysts are few and with minimal structural flexibility for engineering properties. Moreover, the scope of utilizing unprocessed water is yet unknown and may widely differ from competing techniques due to the constantly varying nature of surface potential.
View Article and Find Full Text PDFSuperconducting crystals with a lack of inversion symmetry can potentially host unconventional pairing. However, till today, no direct conclusive experimental evidence of such unconventional order parameters in non-centrosymmetric superconductors has been reported. In this paper, through direct measurement of the superconducting energy gap by scanning tunnelling spectroscopy, we report the existence of both s-wave (singlet) and p-wave (triplet) pairing symmetries in non-centrosymmetric Ru[Formula: see text]B[Formula: see text].
View Article and Find Full Text PDFA remarkable decrease in the lattice thermal conductivity and enhancement of thermoelectric figure of merit were recently observed in rock-salt cubic SnTe, when doped with germanium (Ge). Primarily, based on theoretical analysis, the decrease in lattice thermal conductivity was attributed to local ferroelectric fluctuations induced softening of the optical phonons which may strongly scatter the heat carrying acoustic phonons. Although the previous structural analysis indicated that the local ferroelectric transition temperature would be near room temperature in [Formula: see text], a direct evidence of local ferroelectricity remained elusive.
View Article and Find Full Text PDFPd[Formula: see text]Bi[Formula: see text]S[Formula: see text] (PBS) is a recently proposed topological semimetal candidate. However, evidence for topological surface states have not yet been revealed in transport measurements due to the large mobility of bulk carriers. We report the growth and magneto-transport studies of PBS thin films where the mobility of the bulk carriers is reduced by two orders of magnitude, revealing for the first time, contributions from the 2-dimensional (2D) topological surface states in the observation of the 2D weak anti-localization (WAL) effect in magnetic field and angle dependent conductivity measurements.
View Article and Find Full Text PDFIt is widely believed that topological superconductivity, a hitherto elusive phase of quantum matter, can be achieved by inducing superconductivity in topological materials. In search of such topological superconductors, certain topological insulators (like, BiSe) were successfully turned into superconductors by metal-ion (Cu, Pd, Sr, Nb etc) intercalation. Superconductivity could be induced in topological materials through applying pressure as well.
View Article and Find Full Text PDFNovel electronic systems displaying exotic physical properties can be derived from complex topological materials through chemical doping. MoTe, the candidate type-II Weyl semimetal shows dramatically enhanced superconductivity up to 4.1 K upon Re doping in Mo sites.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
April 2021
Orthorhombic GeSe is a promising thermoelectric material. However, large band gap and strong covalent bonding result in a low thermoelectric figure of merit, zT≈0.2.
View Article and Find Full Text PDFThe superconducting systems emerging from topological insulators upon metal ion intercalation or application of high pressure are ideal for investigation of possible topological superconductivity. In this context, Sr-intercalated Bi[Formula: see text]Se[Formula: see text] is specially interesting because it displays pressure induced re-entrant superconductivity where the high pressure phase shows almost two times higher [Formula: see text] than the ambient superconducting phase ( [Formula: see text] K). Interestingly, unlike the ambient phase, the pressure-induced superconducting phase shows strong indication of unconventional superconductivity.
View Article and Find Full Text PDFCo$_3$Sn$_2$S$_2$, a Weyl semimetal that consists of layers of Kagome lattices, \textcolor{blue}{undergoes a transition from a high temperature paramagnetic phase} to a low temperature ferromagnetic phase below 177 K. The phase transition occurs through an intermediate non-trivial magnetic phase, the so called \lq\lq A\rq\rq-phase just below the Curie temperature. The \lq\lq A\rq\rq-phase was earlier linked with a competing anti-ferromagnetic phase, a spin-glass phase and certain indirect measurements indicated the possibility of magnetic Skyrmions in this phase.
View Article and Find Full Text PDFThe orthorhombic phase of GeSe, a structural analogue of layered SnSe (space group: ), has recently attracted attention after a theoretical prediction of high thermoelectric figure of merit, zT > 2. The experimental realization of such high performance in orthorhombic GeSe, however, is still elusive (zT ≈ 0.2).
View Article and Find Full Text PDFRecently RuBwas shown to be a possible two-gap, type-I superconductor. Temperature dependent heat capacity measurements revealed a two-gap superconducting ground state, while magnetic field dependent magnetization measurements indicated surprizing type-I superconductivity with a very low experimental critical field () ∼120 Oe. In this paper, we report direct spectroscopic evidence of two superconducting energy gaps in RuB.
View Article and Find Full Text PDFJ Phys Condens Matter
March 2020
Though the superconducting phase of the type-II Dirac semimetal PdTe was shown to be conventional in nature, the phase continued to be interesting in terms of its magnetic properties. While certain experiments indicated an unexpected type-I superconducting phase, other experiments revealed formation of vortices under the application of magnetic fields. Recently, scanning tunneling spectroscopy (STS) experiments revealed the existence of a mixed phase where type-I and type-II behaviours coexist.
View Article and Find Full Text PDFZrSiS was recently shown to be a new material with topologically non-trivial band structure that exhibits multiple Dirac nodes and a robust linear band dispersion up to an unusually high energy of 2 eV. Such a robust linear dispersion makes the topological properties of ZrSiS insensitive to perturbations like carrier doping or lattice distortion. Here, we show that a novel superconducting phase with a remarkably high [Formula: see text] of 7.
View Article and Find Full Text PDFUltrathin ferroelectric semiconductors with high charge carrier mobility are much coveted systems for the advancement of various electronic and optoelectronic devices. However, in traditional oxide ferroelectric insulators, the ferroelectric transition temperature decreases drastically with decreasing material thickness and ceases to exist below certain critical thickness owing to depolarizing fields. Herein, we show the emergence of an ordered ferroelectric ground state in ultrathin (∼2 nm) single crystalline nanosheets of BiOSe at room temperature.
View Article and Find Full Text PDFThe physical systems with ferromagnetism and 'bad' metallicity hosting unusual transport properties are playgrounds of novel quantum phenomena. Recently EuTi Nb O emerged as a ferromagnetic system where non-trivial temperature dependent transport properties are observed due to coexistence and competition of various magnetic and non-magnetic scattering processes. In the ferromagnetic state, the resistivity shows a T temperature dependence possibly due to electron-magnon scattering and above the Curie temperature [Formula: see text], the dependence changes to T behaviour indicating a correlation between transport and magnetic properties.
View Article and Find Full Text PDFA differentiator is an electronic component used to accomplish mathematical operations of calculus functions of differentiation for shaping different waveforms. Differentiators are used in numerous areas of electronics, including electronic analog computers, wave-shaping circuits, and frequency modulators. Conventional differentiators are fabricated using active operational amplifiers or using passive resistor-capacitor combinations.
View Article and Find Full Text PDFThe type II Dirac semimetal PdTe[Formula: see text] is unique in the family of topological parent materials because it displays a superconducting ground state below 1.7 K. Despite wide speculation on the possibility of an unconventional topological superconducting phase, tunneling and heat capacity measurements revealed that the superconducting phase of PdTe[Formula: see text] follows predictions of the microscopic theory of Bardeen, Cooper and Schrieffer for conventional superconductors.
View Article and Find Full Text PDFThe surface states of topological insulators (TI) are protected by time reversal symmetry and they display intrinsic spin helicity where the momentum of the charge carriers decides their spin states. As a consequence, a current injected through the surface states becomes spin polarized and this transport spin-polarization leads to a proportionate suppression of Andreev reflection in superconductor/TI junctions. Here we show that upon doping BiSe with Mn, the transport spin-polarization is seen to be monotonically suppressed.
View Article and Find Full Text PDFUnlike graphene nanostructures, various physical properties of nanostructured MoS have remained unexplored due to the lack of established fabrication routes. Herein, we have reported unique electrostatic properties of MoS nanostructures, fabricated in a controlled manner of different geometries on 2D flake by using focused laser irradiation technique. Electrostatic force microscopy has been carried out on MoS nanostructures by varying tip bias voltage and lift height.
View Article and Find Full Text PDF