Publications by authors named "Gourisankar Roymahapatra"

Piperine, the alkaloid from Black pepper, is known for its wide range of pharmacological effects. The DNA binding activity of piperine was reported earlier. In this work, we explore the DNA duplex binding properties of four piperine derivatives, piperonal, piperonyl alcohol, piperonylic acid, and piperic acid using biophysical and computational techniques.

View Article and Find Full Text PDF
Article Synopsis
  • The research investigates the effectiveness of different nucleophilic agents, namely tri-methyl phosphine (TMP), tris (2-carboxyethyl) phosphine (TCEP), and N-heterocyclic carbene (NHC), in breaking disulfide bonds.
  • TMP and TCEP successfully cleave these bonds but through an endothermic process, meaning they require energy to proceed.
  • In contrast, the NHC-mediated reaction is exothermic, releasing energy, and the study utilizes advanced methods like natural bond orbital (NBO) analysis to understand electron transfer during these reactions.
View Article and Find Full Text PDF

Functionalized hydrogels, with their unique and adaptable structures, have attracted significant attention in materials and biomaterials research. Fluorescent hydrogels are particularly noteworthy for their sensing capabilities and ability to mimic cellular matrices, facilitating cell infiltration and tracking of drug delivery. Structural elucidation of hydrogels is crucial for understanding their responses to stimuli such as the pH, temperature, and solvents.

View Article and Find Full Text PDF

Antibiotic resistant is the major concern in public health to control the infectious diseases. MRSA (Methicillin-resistant Staphylococcus aureus) is a significant concern in healthcare settings due to its resistance to many antibiotics, including methicillin and other beta-lactams. MRSA infection difficult to treat and increases the risk of complications.

View Article and Find Full Text PDF

Bioactive compounds derived from medicinal plants have acquired immense attentiveness in drug discovery and development. The present study investigated in vitro and predicted in silico the antibacterial, antifungal, and antiviral properties of thymol and carvacrol, and assessed their safety. The performed microbiological assays against Pseudomonas aeruginosa, Escherichia coli, Salmonella enterica Typhimurium revealed that the minimal inhibitory concentration values ranged from (0.

View Article and Find Full Text PDF

Background: COVID-19 is a life-threatening novel corona viral infection to our civilization and spreading rapidly. Tremendousefforts have been made by the researchers to search for a drug to control SARS-CoV-2.

Methods: Here, a series of arsenical derivatives were optimized and analyzed with in silico study to search the inhibitor of RNA dependent RNA polymerase (RdRp), the major replication factor of SARS-CoV-2.

View Article and Find Full Text PDF

Multi-drug resistance (MDR) bacteria pose a significant threat to our ability to effectively treat infections due to the development of several antibiotic resistant mechanisms. A major component in the development of the MDR phenotype in MDR bacteria is over expression of different-type of efflux pumps, which actively pump out antibacterial agents and biocides from the periplasm to the outside of the cell. Consequently, bacterial efflux pumps are an important target for developing novel antibacterial treatments.

View Article and Find Full Text PDF

Azo linked salicyldehyde and a new 2-hydroxy acetophenone based ligands (HL and HL) with their copper(II) complexes [Cu(L)] (1) and [Cu(L)] (2) were synthesized and characterized by spectroscopic methods such as H, 13C NMR, UV-Vis spectroscopy and elemental analyses. Calculation based on Density Functional Theory (DFT), have been performed to obtain optimized structures. Binding studies of these copper (II) complexes with calf thymus DNA (ct-DNA) and torula yeast RNA (t-RNA) were analyzed by absorption spectra, emission spectra and Viscosity studies and Molecular Docking techniques.

View Article and Find Full Text PDF

Superalkalis are complexes that have a lower ionization energy than that of the corresponding alkali and alkaline earth metals. Based on First Principles calculations, the plausible existence of a superalkali complex consisting of an all-metal aromatic trigonal Au3 core coupled with pyridine (Py) and imidazole (IMD) ligands is suggested. The calculated ionization energy (IE) values of the subsequent organometallic complexes, Au3(Py)3 and Au3(IMD)3, are low, thereby mimicking the usual behavior of a superalkali.

View Article and Find Full Text PDF

Keratitis treatment has become more complicated due to the emergence of bacterial or fungal pathogens with enhanced antibiotic resistance. The pharmaceutical applications of N-heterocyclic carbene complexes have received remarkable attention due to their antimicrobial properties. In this paper, the new precursor, 3,3'-(p-phenylenedimethylene) bis{1-(2- methyl-allyl)imidazolium} bromide (1a) and its analogous PF6 salt (1b) were synthesized.

View Article and Find Full Text PDF