Diversity-generating retroelements (DGRs) create massive protein sequence variation (up to 10) in ecologically diverse microorganisms. A recent survey identified around 31,000 DGRs from more than 1,500 bacterial and archaeal genera, constituting more than 90 environment types. DGRs are especially enriched in the human gut microbiome and nano-sized microorganisms that seem to comprise most microbial life and maintain DGRs despite reduced genomes.
View Article and Find Full Text PDFSeveral reports have indicated that impaired mitochondrial function contributes to the development and progression of Huntington's disease (HD). Mitochondrial genome damage, particularly DNA strand breaks (SBs), is a potential cause for its compromised functionality. We have recently demonstrated that the activity of polynucleotide kinase 3'-phosphatase (PNKP), a critical DNA end-processing enzyme, is significantly reduced in the nuclear extract of HD patients due to lower level of a metabolite fructose-2,6 bisphosphate (F2,6BP), a biosynthetic product of 6-phosphofructo-2-kinase fructose-2,6-bisphosphatase 3 (PFKFB3), leading to persistent DNA SBs with 3'-phosphate termini, refractory to subsequent steps for repair completion.
View Article and Find Full Text PDFThe dimeric NF-κB family of transcription factors activates transcription by binding sequence-specifically to DNA response elements known as κB sites, located within the promoters and enhancers of their target genes. While most NF-κB remain inactive in the cytoplasm of unstimulated cells, a small amount of RelA, one of its members, persists in the nucleus, ensuring low-level expression of genes essential for homeostasis. Several cofactors have been identified that aid in DNA binding of RelA.
View Article and Find Full Text PDFThe dimeric NF-κB family of transcription factors activates transcription by binding sequence-specifically to DNA response elements known as κB sites, located within the promoters and enhancers of their target genes. While most NF-κB remain inactive in the cytoplasm of unstimulated cells, a small amount of RelA, one of its members, persists in the nucleus, ensuring low-level expression of genes essential for homeostasis. Several cofactors have been identified that aid in DNA binding of RelA.
View Article and Find Full Text PDFThe functional role of weak DNA binding sites for transcription factor (TF) recruitment and gene expression remains largely unknown. Our study reveals that the weak NF-κB DNA binding sites, which are abundant in gene promoters and enhancers, appear in clusters and exhibit minimal to undetectable NF-κB binding activity in isolation in vitro, yet they play prominent roles in gene regulation within native context in cells. We found nuclear concentration of RelA/p65, the predominant NF-κB, is approximately 0.
View Article and Find Full Text PDFHuntington's disease (HD) and spinocerebellar ataxia type 3 (SCA3) are the two most prevalent polyglutamine (polyQ) neurodegenerative diseases, caused by CAG (encoding glutamine) repeat expansion in the coding region of the huntingtin (HTT) and ataxin-3 (ATXN3) proteins, respectively. We have earlier reported that the activity, but not the protein level, of an essential DNA repair enzyme, polynucleotide kinase 3'-phosphatase (PNKP), is severely abrogated in both HD and SCA3 resulting in accumulation of double-strand breaks in patients' brain genome. While investigating the mechanistic basis for the loss of PNKP activity and accumulation of DNA double-strand breaks leading to neuronal death, we observed that PNKP interacts with the nuclear isoform of 6-phosphofructo-2-kinase fructose-2,6-bisphosphatase 3 (PFKFB3).
View Article and Find Full Text PDFThe IκB Kinase (IKK) complex, containing catalytic IKK2 and noncatalytic NEMO subunits, plays essential roles in the induction of transcription factors of the NF-κB family. Catalytic activation of IKK2 via phosphorylation of its activation loop is promoted upon noncovalent association of linear or K63-linked polyubiquitin chains to NEMO within the IKK complex. The mechanisms of this activation remain speculative.
View Article and Find Full Text PDFMetabolic disorders such as insulin resistance and hypertension are potential risk factors for aging and neurodegenerative diseases. These conditions are reversed in Chromogranin A knockout (CgA-KO) mice. This study investigates the role of CgA in Alzheimer's disease (AD) and corticobasal degeneration (CBD).
View Article and Find Full Text PDFB cell lymphoma 3 (Bcl3), a member of the IκB family proteins, modulates transcription by primarily associating with NF-κB p50 and p52 homodimers. Bcl3 undergoes extensive phosphorylation, though the functions of many of these modifications remain unclear. We previously described that phosphorylation at Ser33, Ser114 and Ser446 partially switches Bcl3 from acting as an IκB-like inhibitor to a transcription regulator by associating with the (p52:p52):DNA binary complex.
View Article and Find Full Text PDFOur previous studies have indicated that insulin resistance, hyperglycemia, and hypertension in aged wild-type (WT) mice can be reversed in mice lacking chromogranin-A (CgA-KO mice). These health conditions are associated with a higher risk of Alzheimer's disease (AD). CgA, a neuroendocrine secretory protein has been detected in protein aggregates in the brains of AD patients.
View Article and Find Full Text PDFThe dimeric nuclear factor kappa B (NF-κB) transcription factors (TFs) regulate gene expression by binding to a variety of κB DNA elements with conserved G:C-rich flanking sequences enclosing a degenerate central region. Toward defining mechanistic principles of affinity regulated by degeneracy, we observed an unusual dependence of the affinity of RelA on the identity of the central base pair, which appears to be noncontacted in the complex crystal structures. The affinity of κB sites with A or T at the central position is ~10-fold higher than with G or C.
View Article and Find Full Text PDFSARS-CoV-2 infection-induced aggravation of host innate immune response not only causes tissue damage and multiorgan failure in COVID-19 patients but also induces host genome damage and activates DNA damage response pathways. To test whether the compromised DNA repair capacity of individuals modulates the severity of COVID-19 infection, we analyze DNA repair gene expression in publicly available patient datasets and observe a lower level of the DNA glycosylase NEIL2 in the lungs of severely infected COVID-19 patients. This observation of lower NEIL2 levels is further validated in infected patients, hamsters and ACE2 receptor-expressing human A549 (A549-ACE2) cells.
View Article and Find Full Text PDFHuntington's disease (HD) and spinocerebellar ataxia type 3 (SCA3) are the two most prevalent polyglutamine (polyQ) neurodegenerative diseases, caused by CAG (encoding glutamine) repeat expansion in the coding region of the huntingtin (HTT) and ataxin-3 (ATXN3) proteins, respectively. We have earlier reported that the activity, but not the protein level, of an essential DNA repair enzyme, polynucleotide kinase 3'-phosphatase (PNKP), is severely abrogated in both HD and SCA3 resulting in accumulation of double-strand breaks in patients' brain genome. While investigating the mechanistic basis for the loss of PNKP activity and accumulation of DNA double-strand breaks leading to neuronal death, we observed that PNKP interacts with the nuclear isoform of 6-phosphofructo-2-kinase fructose-2,6-bisphosphatase 3 (PFKFB3).
View Article and Find Full Text PDFRapid and high-fidelity phosphorylation of two serines (S32 and S36) of IκBα by a prototype Ser/Thr kinase IKK2 is critical for fruitful canonical NF-κB activation. Here, we report that IKK2 is a dual specificity Ser/Thr kinase that autophosphorylates itself at tyrosine residues in addition to its activation loop serines. Mutation of one such tyrosine, Y169, located in proximity to the active site, to phenylalanine, renders IKK2 inactive for phosphorylation of S32 of IκBα.
View Article and Find Full Text PDFRNA-protein interactions regulate a myriad of biological functions through formation of ribonucleoprotein complexes. These complexes may consist of one or more RNA-protein interaction network(s) providing additional layers of regulatory potential to the RNA. Moreover, since the protein-binding also regulates local and global structure of the RNA by structurally remodeling the latter, it is important to correlate RNA nucleotide flexibility with the site of protein-binding.
View Article and Find Full Text PDFThe mammalian NF-κB p52:p52 homodimer together with its cofactor Bcl3 activates transcription of κB sites with a central G/C base pair (bp), while it is inactive toward κB sites with a central A/T bp. To understand the molecular basis for this unique property of p52, we have determined the crystal structures of recombinant human p52 protein in complex with a P-selectin(PSel)-κB DNA (5'-GGGGTACCCC-3') (central bp is underlined) and variants changing the central bp to A/T or swapping the flanking bp. The structures reveal a nearly two-fold widened minor groove in the central region of the DNA as compared to all other currently available NF-κB-DNA complex structures, which have a central A/T bp.
View Article and Find Full Text PDFAims: Aging is associated with the development of insulin resistance and hypertension which may stem from inflammation induced by accumulation of toxic bacterial DNA crossing the gut barrier. The aim of this study was to identify factors counter-regulating these processes. Taking advantage of the Chromogranin A (CgA) knockout (CgA-KO) mouse as a model for healthy aging, we have identified (V-set and immunoglobulin domain containing 4) as the critical checkpoint gene in offsetting age-associated hypertension and diabetes.
View Article and Find Full Text PDFWe recently reported that serine-arginine-rich (SR) protein-mediated pre-mRNA structural remodeling generates a pre-mRNA 3D structural scaffold that is stably recognized by the early spliceosomal components. However, the intermediate steps between the free pre-mRNA and the assembled early spliceosome are not yet characterized. By probing the early spliceosomal complexes in vitro and RNA-protein interactions in vivo, we show that the SR proteins bind the pre-mRNAs cooperatively generating a substrate that recruits U1 snRNP and U2AF65 in a splice signal-independent manner.
View Article and Find Full Text PDFCompromised DNA repair capacity of individuals could play a critical role in the severity of SARS-CoV-2 infection-induced COVID-19. We therefore analyzed the expression of DNA repair genes in publicly available transcriptomic datasets of COVID-19 patients and found that the level of NEIL2, an oxidized base specific mammalian DNA glycosylase, is particularly low in the lungs of COVID-19 patients displaying severe symptoms. Downregulation of pulmonary NEIL2 in CoV-2-permissive animals and postmortem COVID-19 patients validated these results.
View Article and Find Full Text PDFCanonical NF-κB signaling through the inhibitor of κB kinase (IKK) complex requires induction of IKK2/IKKβ subunit catalytic activity via specific phosphorylation within its activation loop. This process is known to be dependent upon the accessory ubiquitin (Ub)-binding subunit NF-κB essential modulator (NEMO)/IKKγ as well as poly-Ub chains. However, the mechanism through which poly-Ub binding serves to promote IKK catalytic activity is unclear.
View Article and Find Full Text PDFInfluenza A virus (IAV) is a human-infecting pathogen with a history of causing seasonal epidemics and on several occasions worldwide pandemics. Infection by IAV causes a dramatic decrease in host mRNA translation, whereas viral mRNAs are efficiently translated. The IAV mRNAs have a highly conserved 5'-untranslated region (5'UTR) that is rich in adenosine residues.
View Article and Find Full Text PDFIn India, COVID-19 (Corona Virus Disease-2019) continues to this day, although with subdued intensity, following two major waves of viral infection. Despite ongoing vaccination drives to curb the spread of COVID-19, the relative potential of the administered vaccines to render immune protection to the general population and their advantage over natural infection remain undocumented. In this study, we examined the humoral and cell-mediated immune responses induced by the two vaccines Covishield and Covaxin, in individuals living in and around Kolkata, India.
View Article and Find Full Text PDF