Objective To study whether there is an association between adiponectin and endoplasmic reticulum/sarcoplasmic reticulum (ERSR) stress. Research design Eleven-month-old male wild-type (WT) and adiponectin knockout (ADKO) mice were placed on chow or high fat diet for 12 weeks. The changes in ER stress and inflammatory genes were determined in the epididymal adipose, as well as heart tissue of adult WT and ADKO mice.
View Article and Find Full Text PDFPeroxisome proliferator-activated receptor-α (PPARα) activation attenuates cisplatin (CP)-mediated acute kidney injury by increasing fatty acid oxidation, but mechanisms leading to reduced renal triglyceride (TG) accumulation could also contribute. Here, we investigated the effects of PPARα and CP on expression and enzyme activity of kidney lipoprotein lipase (LPL) as well as on expression of angiopoietin protein-like 4 (Angptl4), glycosylphosphatidylinositol-anchored-HDL-binding protein (GPIHBP1), and lipase maturation factor 1 (Lmf1), which are recognized as important proteins that modulate LPL activity. CP caused a 40% reduction in epididymal white adipose tissue (WAT) mass, with a reduction of LPL expression and activity.
View Article and Find Full Text PDFThe endoplasmic reticulum (ER) of adipocytes plays a major role in the assembly and secretion of adipokines. The levels of serum adiponectin, secreted by adipocytes, are decreased in insulin resistance, diabetes, and obesity. The role of ER stress in downregulating adiponectin levels has been demonstrated in mouse models of obesity.
View Article and Find Full Text PDFObjective: A common gain-of-function LPL variant, LPLS447X, has favorable clinical features and involves a C→G base change at nucleotide 1595 of the LPL cDNA, along with a haplotype, which includes other non-coding SNPs. The mechanism for the LPL gain-in-function is not clear. LPL translation is regulated by epinephrine by an RNA-protein complex, consisting of PKA subunits and an A kinase anchoring protein (AKAP), which targets the 3'UTR.
View Article and Find Full Text PDFRecent studies indicate that significant health benefits involving the regulation of signaling proteins result from the consumption of omega-3 polyunsaturated fatty acids (ω-3 PUFAs). Serum response factor (SRF) is involved in transcriptional regulation of muscle growth and differentiation. SRF levels are increased in the aging heart muscle.
View Article and Find Full Text PDFMitochondria play critical roles in oxidative phosphorylation and energy metabolism. Increasing evidence supports that mitochondrial DNA (mtDNA) damage and dysfunction play vital roles in the development of many mitochondria-related diseases, such as obesity, diabetes mellitus, infertility, neurodegenerative disorders, and malignant tumors in humans. Human 8-oxoguanine-DNA glycosylase 1 (hOGG1) transgenic (TG) mice were produced by nuclear microinjection.
View Article and Find Full Text PDFAdipose triglyceride lipase (ATGL) catalyzes the first step in adipocyte and muscle triglyceride hydrolysis, and comparative gene identification-58 (CGI-58) is an essential cofactor. We studied the expression of ATGL and CGI-58 in human adipose and muscle and examined correlations with markers of muscle fatty acid oxidation. Nondiabetic volunteers were studied.
View Article and Find Full Text PDFContext: The study investigated the regulation of matrix metalloproteinases (MMP)-9 in obesity-associated insulin resistance in humans.
Objectives: The objectives of the investigation were to study MMP-9 regulation by insulin resistance and pioglitazone treatment in impaired glucose tolerant subjects using adipose tissue biopsies and study the mechanism of MMP-9 regulation by pioglitazone in adipocyte cultures.
Research Design: 86 nondiabetic, weight-stable subjects between 21 and 66 yr of age were recruited in a university hospital research center setting.
Adiponectin, made exclusively by adipocytes, is a 30-kDa secretory protein assembled posttranslationally into low-molecular weight, middle-molecular weight, and high-molecular weight homo-oligomers. PPARgamma ligand thiozolidinediones, which are widely used in the treatment of type II diabetes, increase adiponectin levels. PPARgamma also has several putative ligands that include fatty acid derivatives.
View Article and Find Full Text PDFJ Clin Endocrinol Metab
November 2008
Context And Objective: Stearoyl-coenzyme A desaturase (SCD1) is the rate-limiting enzyme that converts palmitoyl- and stearoyl-coenzyme A to palmitoleoyl- and oleoyl-cownzyme A, respectively. SCD-deficient mice are protected from obesity, and the ob/ob mouse has high levels of SCD. This study was designed to better characterize SCD1 gene and protein expression in humans with varying insulin sensitivity.
View Article and Find Full Text PDFMetab Syndr Relat Disord
June 2008
Background: Adiponectin, an adipocyte-specific secretory protein, is known to circulate as different isoforms in the blood stream.
Methods: Using sucrose gradients and Western blotting on nondenaturing gels, adiponectin isoforms were examined in human serum, plasma, adipose tissue, and cells. The medium from human adipose tissue and human and mouse adipocytes were also examined for changes in isoform formation upon treatment with EGTA.
Adipose LPL (lipoprotein lipase) plays an important role in regulating plasma triacylglycerols and lipid metabolism. We have previously demonstrated that PKCalpha (protein kinase Calpha) depletion inhibits LPL translation in 3T3-F442A adipocytes. Using in vitro translation experiments, the minimum essential region on the 3'UTR (3'-untranslated region) of LPL mRNA required for the inhibition of translation was identified as the proximal 39 nt.
View Article and Find Full Text PDFAcyl-coenzyme A:diacylglycerol transferase (DGAT), fatty acid synthetase (FAS), and LPL are three enzymes important in adipose tissue triglyceride accumulation. To study the relationship of DGAT1, FAS, and LPL with insulin, we examined adipose mRNA expression of these genes in subjects with a wide range of insulin sensitivity (SI). DGAT1 and FAS (but not LPL) expression were strongly correlated with SI.
View Article and Find Full Text PDFTo examine the role of adipose-resident macrophages in insulin resistance, we examined the gene expression of CD68, a macrophage marker, along with macrophage chemoattractant protein-1 (MCP-1) in human subcutaneous adipose tissue using real-time RT-PCR. Both CD68 and MCP-1 mRNAs were expressed in human adipose tissue, primarily in the stromal vascular fraction. When measured in the adipose tissue from subjects with normal glucose tolerance, covering a wide range of BMI (21-51 kg/m2) and insulin sensitivity (S(I)) (0.
View Article and Find Full Text PDFActivation of protein kinase A by catecholamines inhibits lipoprotein lipase (LPL) activity through the elaboration of an RNA binding complex, which inhibits LPL translation by binding to the 3'-untranslated region of the LPL mRNA. To better define this process, we reconstituted the inhibitory RNA binding complex in vitro and demonstrated that the K homology (KH) domain of A kinase anchor protein (AKAP) 121/149 plays a vital role in the inhibition of LPL translation. Inhibition of LPL translation occurred in vitro only when the Calpha subunit, R subunit, and AKAP 149 were present.
View Article and Find Full Text PDFApoE is expressed in multiple mammalian cell types in which it supports cellular differentiated function. In this report we demonstrate that apoE expression in adipocytes is regulated by factors involved in modulating systemic insulin sensitivity. Systemic treatment with pioglitazone increased systemic insulin sensitivity and increased apoE mRNA levels in adipose tissue by 2-3-fold.
View Article and Find Full Text PDFObesity-related insulin resistance may be caused by adipokines such as IL-6, which is known to be elevated with the insulin resistance syndrome. A previous study reported that IL-6 knockout mice (IL-6(-/-)) developed maturity onset obesity, with disturbed carbohydrate and lipid metabolism, and increased leptin levels. Because IL-6 is associated with insulin resistance, one might have expected IL-6(-/-) mice to be more insulin sensitive.
View Article and Find Full Text PDFJ Clin Endocrinol Metab
March 2004
The perilipins are highly phosphorylated adipocyte proteins that are localized at the surface of the lipid droplet. With activation by protein kinase A, perilipins translocate away from the lipid droplet and allow hormone-sensitive lipase to hydrolyze the adipocyte triglycerides to release nonesterified fatty acids (NEFA). Because of the potential importance of adipocyte lipolysis to obesity and insulin resistance, we measured perilipin protein and mRNA levels in nondiabetic subjects with varying degrees of insulin resistance.
View Article and Find Full Text PDFAdiponectin is a 29-kDa adipocyte protein that has been linked to the insulin resistance of obesity and lipodystrophy. To better understand the regulation of adiponectin expression, we measured plasma adiponectin and adipose tissue adiponectin mRNA levels in nondiabetic subjects with varying degrees of obesity and insulin resistance. Plasma adiponectin and adiponectin mRNA levels were highly correlated with each other (r = 0.
View Article and Find Full Text PDFLipoprotein lipase (LPL) is a key enzyme in lipoprotein and adipocyte metabolism. Defects in LPL can lead to hypertriglyceridemia and the subsequent development of atherosclerosis. The mechanisms of regulation of this enzyme are complex and may occur at multiple levels of gene expression.
View Article and Find Full Text PDFThe balance of lipid flux in adipocytes is controlled by the opposing actions of lipolysis and lipogenesis, which are controlled primarily by hormone-sensitive lipase and lipoprotein lipase (LPL), respectively. Catecholamines stimulate adipocyte lipolysis through reversible phosphorylation of hormone-sensitive lipase, and simultaneously inhibit LPL activity. However, LPL regulation is complex and previous studies have described translational regulation of LPL in response to catecholamines because of an RNA-binding protein that interacts with the 3'-untranslated region of LPL mRNA.
View Article and Find Full Text PDFLipoprotein lipase (LPL) is an important enzyme in adipocyte and lipid metabolism with complex cellular regulation. Previous studies demonstrated an inhibition of LPL activity and synthesis following depletion of protein kinase C (PKC) isoforms with long term treatment of 3T3-F442A adipocytes with 12-O-tetradecanoylphorbol-13-acetate. To identify the specific PKC isoforms involved, we treated cells with antisense oligonucleotides that block expression of specific PKC isoforms.
View Article and Find Full Text PDF