DNA-targeted separated bis-mustards were synthesized by attaching aniline mono-mustards at the 4- and 9-positions of the DNA-intercalating ligand 9-aminoacridine-4-carboxamide, with the intention of improving the low cross-link to monoadduct ratio found with most alkylating agents. The geometry of these compounds requires that, when the acridine binds to DNA by intercalation, one alkylating moiety is delivered to each DNA groove. Gel electrophoretic studies show that only one arm of these compounds (probably that attached to the 9-position) alkylates DNA, such alkylation occurring specifically in the major groove at the N7 of guanines.
View Article and Find Full Text PDFFour series of acridine-linked aniline mustards have been prepared and evaluated for in vitro cytotoxicity, in vivo antitumor activity, and DNA cross-linking ability. The anilines were attached to the DNA-intercalating acridine chromophores by link groups (-O-, -CH2-, -S-, and -SO2-) of widely varying electronic properties, providing four series of widely differing mustard reactivity where the alkyl chain linking the acridine and mustard moieties was varied from two to five carbons. Relationships were sought between chain length and biological properties.
View Article and Find Full Text PDFThe sequence preferences for alkylation of a series of novel parasubstituted aniline mustards linked to the DNA-intercalating chromophore 9-aminoacridine by an alkyl chain of variable length were studied by using procedures analogous to Maxam-Gilbert reactions. The compounds alkylate DNA at both guanine and adenine sites. For mustards linked to the acridine by a short alkyl chain through a para O- or S-link group, 5'-GT sequences are the most preferred sites at which N7-guanine alkylation occurs.
View Article and Find Full Text PDFA series of DNA-targeted aniline mustards have been prepared, and their chemical reactivity and in vitro and in vivo cytotoxicity have been evaluated and compared with that of the corresponding simple aniline mustards. The alkylating groups were anchored to the DNA-intercalating 9-aminoacridine chromophore by an alkyl chain of fixed length attached at the mustard 4-position through a link group X, while the corresponding simple mustards possessed an electronically identical small group at this position. The link group was varied to provide a series of compounds of similar geometry but widely differing mustard reactivity.
View Article and Find Full Text PDFAlthough the biological properties (cytotoxicity, mutagenicity and carcinogenicity) of alkylating agents result from their bonding interactions with DNA, such compounds generally do not show any special binding affinity for DNA. A series of acridine-linked aniline mustards of widely-varying alkylator reactivity have been designed as DNA-directed alkylating agents. We have considered whether such DNA targeting has an effect on mutagenic properties by evaluating this series of drugs in comparison with their untargeted counterparts for toxic, recombinogenic and mutagenic properties in Saccharomyces cerevisiae strain D5.
View Article and Find Full Text PDFBifunctional alkylating agents are reactive compounds which work by crosslinking DNA, but which have no special affinity for it. A series of acridine-linked aniline mustards of widely-varying alkylator reactivity (5-11), designed as DNA-directed alkylating agents, have been evaluated in various strains of Salmonella typhimurium with differing DNA repair capabilities to obtain information about their mechanism of action. The compounds showed greatly increased potency (determined as D37 values) compared with the corresponding untargeted mustards, in the repair-proficient strain TA1978+.
View Article and Find Full Text PDF