ACS Appl Mater Interfaces
April 2023
SrVO (SVO) is a prospective candidate to replace the conventional indium tin oxide (ITO) among the new generation of transparent conducting oxide (TCO) materials. In this study, the structural, electrical, and optical properties of SVO thin films, both epitaxial and polycrystalline, are determined during and after heat treatments in the 150-250 °C range and under ambient environment in order to explore the chemical stability of this material. The use of these relatively low temperatures speeds up the natural aging of the films and allows following the evolution of their related properties.
View Article and Find Full Text PDFWe present the experimental realization of plasmonic hyperdoped Si nanocrystals embedded in silica a combination of sequential low energy ion implantation and rapid thermal annealing. We show that phosphorus dopants are incorporated into the nanocrystal cores at concentrations up to six times higher than P solid solubility in bulk Si by combining 3D mapping with atom probe tomography and analytical transmission electron microscopy. We shed light on the origin of nanocrystal growth at high P doses, which we attribute to Si recoiling atoms generated in the matrix by P implantation, which likely increase Si diffusivity and feed the Si nanocrystals.
View Article and Find Full Text PDFUsing localized surface plasmon resonance (LSPR) as an optical probe we demonstrate the presence of free carriers in phosphorus doped silicon nanocrystals (SiNCs) embedded in a silica matrix. In small SiNCs, with radius ranging from 2.6 to 5.
View Article and Find Full Text PDFPassivation is a key process for the optimization of silicon p-n junctions. Among the different technologies used to passivate the surface and contact interfaces, alumina is widely used. One key parameter is the thickness of the passivation layer that is commonly deposited using atomic layer deposition (ALD) technique.
View Article and Find Full Text PDFRare earth (RE) ions doped in Si-based materials, compatible with Si technology, are promising compounds with regards to optical communication and energy conversion. In this article, we show the emission properties of Nd-doped Si-rich Si oxynitride (Nd-SRSON) films, and their dependence on the dangling bond density and the nature of the sensitizer. These films were prepared by reactive magnetron sputtering and post-annealing.
View Article and Find Full Text PDFIn this work, an atomic layer deposited (ALD) AlO ultrathin layer was introduced to passivate the ZnO-nanoparticle (NP) buffer layer of inverted polymer solar cells (PSCs) based on P3HT:PCBM. The surface morphology of the ZnO-NP/AlO interface was systematically analyzed by using a variety of tools, in particular transmission electron microscopy (TEM), evidencing a conformal ALD-AlO deposition. The thickness of the AlO layers was optimized at the nanoscale to boost electron transport of the ZnO-NP layer, which can be attributed to the suppression of oxygen vacancy defects in ZnO-NPs confirmed by photoluminescence measurement.
View Article and Find Full Text PDFThis paper describes an original design leading to the field effect passivation of Si n-p junctions. Ordered Ag nanoparticle (Ag-NP) arrays with optimal size and coverage fabricated by means of nanosphere lithography and thermal evaporation, were embedded in ultrathin-AlO/SiN :H stacks on the top of implanted Si n-p junctions, to achieve effective surface passivation. One way to characterize surface passivation is to use photocurrent, sensitive to recombination centers.
View Article and Find Full Text PDFCe-Doped SiON films are deposited by magnetron reactive sputtering from a CeO target under a nitrogen reactive gas atmosphere. Visible photoluminescence measurements regarding the nitrogen gas flow reveal a large emission band centered at 450 nm for a sample deposited under a 2 sccm flow. Special attention is paid to the origin of such an emission at high nitrogen concentration.
View Article and Find Full Text PDFTerbium doped silicon oxynitride host matrix is suitable for various applications such as light emitters compatible with CMOS technology or frequency converter systems for photovoltaic cells. In this study, amorphous Tb ion doped nitrogen-rich silicon oxynitride (NRSON) thin films were fabricated using a reactive magnetron co-sputtering method, with various N flows and annealing conditions, in order to study their structural and emission properties. Rutherford backscattering (RBS) measurements and refractive index values confirmed the silicon oxynitride nature of the films.
View Article and Find Full Text PDFWe present a comparative study of the gain achievement in a waveguide whose active layer is constituted by a silica matrix containing silicon nanograins acting as sensitizer of either neodymium ions (Nd3+) or erbium ions (Er3+). By means of an auxiliary differential equation and finite difference time domain (ADE-FDTD) approach that we developed, we investigate the steady states regime of both rare earths ions and silicon nanograins levels populations as well as the electromagnetic field for different pumping powers ranging from 1 to 104 mW/mm2. Moreover, the achievable gain has been estimated in this pumping range.
View Article and Find Full Text PDFA facile and rapid photochemical method for preparing supported silver nanoparticles (Ag-NPs) in a suspension of faujasite type (FAU) zeolite nanocrystals is described. Silver cations are introduced by ion exchange into the zeolite and subsequently irradiated with a Xe-Hg lamp (200 W) in the presence of a photoactive reducing agent (2-hydroxy-2-methylpropiophenone). UV-vis characterization indicates that irradiation time and intensity (I0) influence significantly the amount of silver cations reduced.
View Article and Find Full Text PDFA new algorithm based on auxiliary differential equation and finite difference time domain method (ADE-FDTD method) is presented to model a waveguide whose active layer is constituted of a silica matrix doped with rare-earth and silicon nanograins. The typical lifetime of rare-earth can be as large as some ms, whereas the electromagnetic field in a visible range and near-infrared is characterized by a period of the order of fs. Due to the large difference between these two characteristic times, the conventional ADE-FDTD method is not suited to treat such systems.
View Article and Find Full Text PDFIn this study, we report on the evolution of the microstructure and photoluminescence properties of Pr3+-doped hafnium silicate thin films as a function of annealing temperature (TA). The composition and microstructure of the films were characterized by means of Rutherford backscattering spectrometry, spectroscopic ellipsometry, Fourier transform infrared absorption, and X-ray diffraction, while the emission properties have been studied by means of photoluminescence (PL) and PL excitation (PLE) spectroscopies. It was observed that a post-annealing treatment favors the phase separation in hafnium silicate matrix being more evident at 950°C.
View Article and Find Full Text PDFSilicon nanocrystals embedded in a silicon oxide matrix were deposited by radio frequency reactive magnetron sputtering. By means of Raman spectroscopy, we have found that a compressive stress is exerted on the silicon nanocrystal cores. The stress varies as a function of silicon concentration in the silicon-rich silicon oxide layers varies, which can be attributed to changes of nanocrystal environment.
View Article and Find Full Text PDF: Photoluminescence spectroscopy and atom probe tomography were used to explore the optical activity and microstructure of Er3+-doped Si-rich SiO2 thin films fabricated by radio-frequency magnetron sputtering. The effect of post-fabrication annealing treatment on the properties of the films was investigated. The evolution of the nanoscale structure upon an annealing treatment was found to control the interrelation between the radiative recombination of the carriers via Si clusters and via 4f shell transitions in Er3+ ions.
View Article and Find Full Text PDFThe specific dependence of the Si content on the structural and optical properties of O- and H-free Si-rich nitride (SiNx>1.33) thin films deposited by magnetron sputtering is investigated. A semiempirical relation between the composition and the refractive index was found.
View Article and Find Full Text PDFDue to the quantum confinement, silicon nanoclusters (Si-ncs) embedded in a dielectric matrix are of prime interest for new optoelectronics and microelectronics applications. In this context, SiO(x)/SiO₂ multilayers have been prepared by magnetron sputtering and subsequently annealed to induce phase separation and Si clusters growth. The aim of this paper is to study phase separation processes and formation of nanoclusters in SiO(x)/SiO₂ multilayers by atom probe tomography.
View Article and Find Full Text PDFMicrostructural, electrical, and optical properties of undoped and Nd3+-doped SiOx/SiNy multilayers fabricated by reactive radio frequency magnetron co-sputtering have been investigated with regard to thermal treatment. This letter demonstrates the advantages of using SiNy as the alternating sublayer instead of SiO2. A high density of silicon nanoclusters of the order 1019 nc/cm3 is achieved in the SiOx sublayers.
View Article and Find Full Text PDFBy means of ADE-FDTD method, this paper investigates the electromagnetic modelling of a rib-loaded waveguide composed of a Nd3+ doped Silicon Rich Silicon Oxide active layer sandwiched between a SiO2 bottom cladding and a SiO2 rib. The Auxilliary Differential Equations are the rate equations which govern the levels populations. The Finite Difference Time Domain (FDTD) scheme is used to solve the space and time dependent Maxwell equations which describe the electromagnetic field in a copropagating scheme of both pumping (λpump = 488 nm) and signal (λsignal = 1064 nm) waves.
View Article and Find Full Text PDFIn this study, we have performed nanoscale characterization of Si-clusters and Si-nanowires with a laser-assisted tomographic atom probe. Intrinsic and p-type silicon nanowires (SiNWs) are elaborated by chemical vapor deposition method using gold as catalyst, silane as silicon precursor, and diborane as dopant reactant. The concentration and distribution of impurity (gold) and dopant (boron) in SiNW are investigated and discussed.
View Article and Find Full Text PDFWe examined and compared the electrical properties of silica (SiO2) and silicon oxynitride (SiOxNy) layers embedding silicon nanoclusters (Sinc) integrated in metal-insulator-semiconductor (MIS) devices. The technique used for the deposition of such layers is the reactive magnetron sputtering of a pure SiO2 target under a mixture of hydrogen/argon plasma in which nitrogen is incorporated in the case of SiOxNy layer. Al/SiOxNy-Sinc/p-Si and Al/SiO2-Sinc/p-Si devices were fabricated and electrically characterized.
View Article and Find Full Text PDFNanoscale Res Lett
February 2011
Pure and Si-rich HfO2 layers fabricated by radio frequency sputtering were utilized as alternative tunnel oxide layers for high-k/Si-nanocrystals-SiO2/SiO2 memory structures. The effect of Si incorporation on the properties of Hf-based tunnel layer was investigated. The Si-rich SiO2 active layers were used as charge storage layers, and their properties were studied versus deposition conditions and annealing treatment.
View Article and Find Full Text PDFIn this article, the microstructure and photoluminescence (PL) properties of Nd-doped silicon-rich silicon oxide (SRSO) are reported as a function of the annealing temperature and the Nd concentration. The thin films, which were grown on Si substrates by reactive magnetron co-sputtering, contain the same Si excess as determined by Rutherford backscattering spectrometry. Fourier transform infrared (FTIR) spectra show that a phase separation occurs during the annealing because of the condensation of the Si excess resulting in the formation of silicon nanoparticles (Si-np) as detected by high-resolution transmission electron microscopy and X-ray diffraction (XRD) measurements.
View Article and Find Full Text PDFSilicon nanoclusters are of prime interest for new generation of optoelectronic and microelectronics components. Physical properties (light emission, carrier storage..
View Article and Find Full Text PDFIn this article, we have fabricated and studied a new multilayer structure Si-SiO2/SiNx by reactive magnetron sputtering. The comparison between SiO2 and SiNx host matrices in the optical properties of the multilayers is detailed. Structural analysis was made on the multilayer structures using Fourier transform infrared spectroscopy.
View Article and Find Full Text PDF