Retraction of 'Light-induced synthesis of unsymmetrical organic carbonates from alcohols, methanol and CO under ambient conditions' by Sandhya Saini , , 2021, , 12800-12803, https://doi.org/10.1039/D1CC05833A.
View Article and Find Full Text PDFBackground And Objective: Accurate extraction of retinal vascular components is vital in diagnosing and treating retinal diseases. Achieving precise segmentation of retinal blood vessels is challenging due to their complex structure and overlapping vessels with other anatomical features. Existing deep neural networks often suffer from false positives at vessel branches or missing fragile vessel patterns.
View Article and Find Full Text PDFWith the exponential rise in global air traffic, ensuring swift passenger processing while countering potential security threats has become a paramount concern for aviation security. Although X-ray baggage monitoring is now standard, manual screening has several limitations, including the propensity for errors, and raises concerns about passenger privacy. To address these drawbacks, researchers have leveraged recent advances in deep learning to design threat-segmentation frameworks.
View Article and Find Full Text PDFHerein we report the first successful synthesis of ethanol-assisted generated reduced graphene oxide as a support for CuO/NiO nanoparticles. Through the strategic incorporation of Cu and Ni precursors into ethanol, followed by thermal treatment, we achieved the fabrication of reduced graphene oxide-supported CuO/NiO nanoparticles. The material underwent thorough characterization using FT-IR, XRD, TEM, XPS, Raman, and UV-DRS analysis.
View Article and Find Full Text PDFStem Cell Rev Rep
January 2025
The discipline of 3D cell modeling is currently undergoing a surge of captivating developments that are enhancing the realism and utility of tissue simulations. Using bioinks which represent cells, scaffolds, and growth factors scientists can construct intricate tissue architectures layer by layer using innovations like 3D bioprinting. Drug testing can be accelerated and organ functions more precisely replicated owing to the precise control that microfluidic technologies and organ-on-chip devices offer over the cellular environment.
View Article and Find Full Text PDFAntisense medications treat diseases that cannot be treated using traditional pharmacological technologies. Nucleotide monomers of bare and phosphorothioate (PS)-modified LNA, N-MeO-amino-BNA, 2',4'-BNA[NH], 2',4'-BNA[NMe], and N-Me-aminooxy-BNA antisense modifications were considered for a detailed DFT-based quantum chemical study to estimate their molecular-level structural and electronic properties. Oligomer hybrid duplex stability is described by performing an elaborate MD simulation study by incorporating the PS-LNA and PS-BNA antisense modifications onto 14-mer ASO/RNA hybrid gapmer type duplexes targeting protein PTEN mRNA nucleic acid sequence (5'--3'/3'-GAAUCGUGACCGGA-5').
View Article and Find Full Text PDFThe transformation of metabolites into amyloidogenic aggregates represent an intriguing dimension in the pathophysiology of metabolic disorders, including alkaptonuria, canavan disease, and isovaleric acidemia. Central to this phenomenon are the metabolites homogentisic acid (HA), N-acetyl aspartic acid (NAA), and isovaleric acid (IVA), which we found, weave an intricate network of self-assembled structures. Leveraging an array of microscopy techniques, we traced the morphological behavior of these assemblies that exhibit concentration and time-dependent morphological transitions from isolated globules to clustered aggregates.
View Article and Find Full Text PDFThe aggregation of amino acids into amyloid-like structures is a critical phenomenon for understanding the pathophysiology of various diseases, including inborn errors of metabolism (IEMs) associated with amino acid imbalances. Previous studies have primarily focused on self-assembly of aromatic amino acids, leading to a limited understanding of nonaromatic, polar amino acids in this context. To bridge this gap, our study investigates the self-assembly and aggregation behavior of specific nonaromatic charged and uncharged polar amino acids l-glutamine (Gln), l-aspartic acid (Asp), and l-glutamic acid (Glu), which have not been reported widely in the context of amyloid aggregation.
View Article and Find Full Text PDFUrban particulate matter (PM; uPM) poses significant health risks, particularly to the respiratory system. Fine particles, such as PM2.5, can penetrate deep into the lungs and exacerbate a range of health problems, including emphysema, asthma, and lung cancer.
View Article and Find Full Text PDFA straightforward and convenient approach for producing AgCN at room temperature using acetonitrile as a source has been developed, employing various iron salts. To date, there have been no prior studies documenting the synthesis of AgCN by cleaving the C-CN bond in acetonitrile with the use of iron salts. The resulting highly crystalline material was subjected to characterization through XRD and FT-IR analysis.
View Article and Find Full Text PDFDiabetic retinopathy (DR) is the most prevalent cause of visual impairment in adults worldwide. Typically, patients with DR do not show symptoms until later stages, by which time it may be too late to receive effective treatment. DR Grading is challenging because of the small size and variation in lesion patterns.
View Article and Find Full Text PDFIndian J Otolaryngol Head Neck Surg
February 2024
Objective: To study the efficacy of coblation in the endoscopic surgery of sinonasal and skull base masses.
Study Design: Prospective Interventional Study.
Method: 100 patients with signs and symptoms of nasal obstruction were enrolled for 14 months.
To give a comprehensive account of the environmental acceptability of 1,1,2,3-tetrafluoropropene (CFCF-CHF) in the troposphere, we have examined the oxidation reaction pathways and kinetics of CFCF-CHF initiated by Cl-atoms using the second-order Møller-Plesset perturbation (MP2) theory along with the 6-31+G(d,p) basis set. We also performed single-point energy calculations to further refine the energies at the CCSD(T) level along with the basis sets 6-31+G(d,p) and 6-311++G(d,p). The estimation of the relative energies and thermodynamic parameters of the CFCF-CHF + Cl reaction clearly shows that Cl-atom addition reaction pathways are more dominant compared to H-abstraction reaction pathways.
View Article and Find Full Text PDFNovel insights into the etiology of metabolic disorders have recently been uncovered through the study of metabolite amyloids. In particular, inborn errors of metabolism (IEMs), including gout, Lesch-Nyhan syndrome (LNS), xanthinuria, citrullinemia, and hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome, are attributed to the dysfunction of the urea cycle and uric acid pathway. In this study, we endeavored to understand and mechanistically characterize the aggregative property exhibited by the principal metabolites of the urea cycle and uric acid pathway, specifically hypoxanthine, xanthine, citrulline, and ornithine.
View Article and Find Full Text PDFThe discovery of Mas-related G protein-coupled receptors (Mrgprs) has opened a compelling chapter in our understanding of immunity and sensory biology. This family of receptors, with their unique expression and diverse ligands, has emerged as key players in inflammatory states and hold the potential to alleviate human diseases. This review will focus on the members of this receptor family expressed on immune cells and how they govern immune and neuro-immune pathways underlying various physiological and pathological states.
View Article and Find Full Text PDFWith the rapid growth of industrialization, deforestation, and burning of fossil fuels, undeniably there has been an incredible escalation of the CO concentration in the atmosphere. In order to mitigate the problem, the capture and utilization of CO in different value-added chemicals have thus remained topics of concerned research for more than a decade. Accordingly, we have performed molecular -level catalytic hydrogenation of CO to formic acid using bare [Cu] dimers as catalysts.
View Article and Find Full Text PDFEarly identification of mental disorders, based on subjective interviews, is extremely challenging in the clinical setting. There is a growing interest in developing automated screening tools for potential mental health problems based on biological markers. Here, we demonstrate the feasibility of an AI-powered diagnosis of different mental disorders using EEG data.
View Article and Find Full Text PDFAmyloids were conventionally referred to as extracellular and intracellular accumulation of Aβ42 peptide, which causes the formation of plaques and neurofibrillary tangles inside the brain leading to the pathogenesis in Alzheimer's disease. Subsequently, amyloid-like deposition was found in the etiology of prion diseases, Parkinson's disease, type II diabetes, and cancer, which was attributed to the aggregation of prion protein, α-Synuclein, islet amyloid polypeptide protein, and p53 protein, respectively. Hence, traditionally amyloids were considered aggregates formed exclusively by proteins or peptides.
View Article and Find Full Text PDFSelf-assembly of modified amino acids facilitate the formation of various structures that have unique properties and therefore serve as excellent bio-organic scaffolds for diverse applications. Self-assembly of Fmoc protected single amino acids has attracted great interest owing to their ease of synthesis and applications as functional materials. Smaller assembly units enable synthetic convenience and potentially broader adoption.
View Article and Find Full Text PDFIt is feasible to recognize the presence and seriousness of eye disease by investigating the progressions in retinal biological structures. Fundus examination is a diagnostic procedure to examine the biological structure and anomalies present in the eye. Ophthalmic diseases like glaucoma, diabetic retinopathy, and cataracts are the main cause of visual impairment worldwide.
View Article and Find Full Text PDFcan cause a variety of infections, including persistent biofilm infections, which are difficult to eradicate with current antibiotic treatments. Here, we demonstrate that combining drugs that have robust anti-persister activity, such as clinafloxacin or oritavancin, in combination with drugs that have high activity against growing bacteria, such as vancomycin or meropenem, could completely eradicate biofilm bacteria in vitro. In contrast, single or two drugs, including the current treatment doxycycline plus rifampin for persistent infection, failed to kill all biofilm bacteria in vitro.
View Article and Find Full Text PDF