Publications by authors named "Goulay R"

Over the past fifty years, swine models have been used for organophosphorus intoxication studies. Among these studies and others on the swine model in general, some physiological data, especially cholinesterase activity highly impacted by organophosphorus compounds like nerve agent VX, still need to be completed. To support and compare our model to others, we have published the experimental protocol, the physiological values of 31 juvenile anesthetized pigs, and the 6 h-follow-up of six supplementary anesthetized control animals and 7 VX-intoxicated pigs.

View Article and Find Full Text PDF

Recent events have shown that organophosphorus nerve agents (OPNAs) are a serious threat. Cholinesterase inhibition by OPNAs results in acetylcholine accumulation, a cholinergic crisis leading to death if untreated. Efficacy assessment of new medical countermeasures against OPNAs relies on translational animal models.

View Article and Find Full Text PDF

Background: Solutes distribution by the intracranial cerebrospinal fluid (CSF) fluxes along perivascular spaces and through interstitial fluid (ISF) play a key role in the clearance of brain metabolites, with essential functions in maintaining brain homeostasis.

Objective: To investigate the impact of decompressive craniectomy (DC) and cranioplasty (CP) on the efficacy of solutes distribution by the intracranial CSF and ISF flux.

Methods: Mice were allocated in 3 groups: sham surgery, DC, and DC followed by CP.

View Article and Find Full Text PDF

Stroke and Alzheimer's disease (AD) are cerebral pathologies with high socioeconomic impact that can occur together and mutually interact. Vascular factors predisposing to cerebrovascular disease have also been specifically associated with development of AD, and acute stroke is known to increase the risk to develop dementia.Despite the apparent association, it remains unknown how acute cerebrovascular disease and development of AD are precisely linked and act on each other.

View Article and Find Full Text PDF

The discovery of the important role of cerebrospinal fluid (CSF) drainage of cerebral metabolite waste, known as the glymphatic system, has changed our view of brain waste clearance. We recently performed experiments to evaluate the glymphatic system in non-human primates (NHP). Here, we report the case of an NHP with iatrogenic CSF leakage.

View Article and Find Full Text PDF

Solute transport through the brain is of major importance for the clearance of toxic molecules and metabolites, and it plays key roles in the pathophysiology of the central nervous system. This solute transport notably depends on the cerebrospinal fluid (CSF) flow, which circulates in the subarachnoid spaces, the ventricles and the perivascular spaces. We hypothesized that the CSF flow may be different in the perinatal period compared to the adult period.

View Article and Find Full Text PDF

It was previously reported that normobaric oxygen therapy (NBO) significantly affected T2-weighted imaging in a mouse model of intracerebral hemorrhage (ICH). However, it is unclear whether a similar phenomenon exists in large volume ICH as seen in human pathology. We investigated the effects of NBO on T2-weighted images in a pig model of ICH.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates the role of tPA (tissue-type plasminogen activator) in the formation and rupture of intracranial aneurysms (IAs), linking it to inflammation and matrix remodeling processes that contribute to these conditions.
  • - Using various mouse models, researchers found that tPA-deficient mice had fewer aneurysms and ruptures, while those lacking plasminogen activator inhibitor showed increased rates, suggesting that tPA plays a significant role in IA pathology.
  • - The findings suggest that targeting tPA could be a potential strategy for preventing the formation and rupture of intracranial aneurysms, highlighting its importance in vascular health.
View Article and Find Full Text PDF

Intracerebral hemorrhage (ICH) is the most severe form of stroke. Catheter-delivered thrombolysis with recombinant tissue-type plasminogen activator (rtPA) for the drainage of ICH is currently under evaluation in a phase III clinical trial (MISTIE III). However, in a pig model of ICH, in situ fibrinolysis with rtPA was reported to increase peri-lesional edema by promoting N-methyl-D-aspartate (NMDA)-dependent excitotoxicity.

View Article and Find Full Text PDF

Background And Purpose: Subarachnoid hemorrhage (SAH) is a devastating form of stroke with neurological outcomes dependent on the occurrence of delayed cerebral ischemia. It has been shown in rodents that some of the mechanisms leading to delayed cerebral ischemia are related to a decreased circulation of the cerebrospinal fluid (CSF) within the brain parenchyma. Here, we evaluated the cerebral circulation of the CSF in a nonhuman primate in physiological condition and after SAH.

View Article and Find Full Text PDF

Background Intracranial aneurysms may be associated with an underlying arteriopathy, leading to arterial wall fragility. Arterial tortuosity is a major characteristic of some connective tissue disease. Aim To determine whether intracranial aneurysm is associated with an underlying arteriopathy.

View Article and Find Full Text PDF

Background And Purpose: The aim of the present study was to investigate the impact of different stroke subtypes on the glymphatic system using MRI.

Methods: We first improved and characterized an in vivo protocol to measure the perfusion of the glymphatic system using MRI after minimally invasive injection of a gadolinium chelate within the cisterna magna. Then, the integrity of the glymphatic system was evaluated in 4 stroke models in mice including subarachnoid hemorrhage (SAH), intracerebral hemorrhage, carotid ligature, and embolic ischemic stroke.

View Article and Find Full Text PDF

Intraventricular hemorrhage (IVH) is the most severe form of stroke with intraventricular fibrinolysis (IVF) as a hopeful treatment. Urokinase (uPA) and tissue-type plasminogen activator (tPA) are used for IVF in Human. No clinical trial has evaluated the differential impact of these two fibrinolytics for IVF.

View Article and Find Full Text PDF