Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease of motor neurons leading to death within 3 years and without a curative treatment. Neurotrophic growth factors (NTFs) are pivotal for cell survival. A reason for the lack of patient efficacy with single recombinant NTF brain infusion is likely to be due to the synergistic neuroprotective action of multiple NTFs on a diverse set of signaling pathways.
View Article and Find Full Text PDFFocal iron accumulation associated with brain iron dyshomeostasis is a pathological hallmark of various neurodegenerative diseases (NDD). The application of iron-sensitive sequences in magnetic resonance imaging has provided a useful tool to identify the underlying NDD pathology. In the three major NDD, degeneration occurs in central nervous system (CNS) regions associated with memory (Alzheimer's disease, AD), automaticity (Parkinson's disease, PD) and motor function (amyotrophic lateral sclerosis, ALS), all of which require a high oxygen demand for harnessing neuronal energy.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that typically results in death within 3-5 years after diagnosis. To date, there is no curative treatment and therefore an urgent unmet need of neuroprotective and/or neurorestorative treatments. Due to their spectrum of capacities in the central nervous system-e.
View Article and Find Full Text PDFIron accumulation has been observed in mouse models and in both sporadic and familial forms of amyotrophic lateral sclerosis (ALS). Iron chelation could reduce iron accumulation and the related excess of oxidative stress in the motor pathways. However, classical iron chelation would induce systemic iron depletion.
View Article and Find Full Text PDFHuman platelet lysates (PLs), which contain multiple neurotrophins, have been proposed for treating neurodegenerative disorders, including Parkinson's disease (PD). However, current PLs suspended in plasma have high protein content and contain fibrinogen/fibrin and, following activation, also proteolytic and thrombogenic enzymes. Upon brain administration, such PLs may saturate the cerebrospinal fluid and exert neurotoxicity.
View Article and Find Full Text PDFIn Parkinson's disease (PD) depletion of dopamine in the nigro-striatal pathway is a main pathological hallmark that requires continuous and focal restoration. Current predominant treatment with intermittent oral administration of its precursor, Levodopa (l-dopa), remains the gold standard but pharmacological drawbacks trigger motor fluctuations and dyskinesia. Continuous intracerebroventricular (i.
View Article and Find Full Text PDFNeurodegenerative diseases have huge economic and societal impacts, and place an immense emotional burden on patients and caregivers. Given that platelets have an essential physiological role in wound healing and tissue repair, human platelet lysates (HPLs) are being developed as a novel, effective biotherapy for neurodegenerative diseases. HPLs constitute abundant, readily accessible sources of physiological mixtures of many growth factors (GFs), with demonstrable effects on neuron survival and thus the development, maintenance, function and plasticity of the vertebrate nervous system.
View Article and Find Full Text PDFParkinson's disease (PD) is a complex illness characterized by progressive dopaminergic neuronal loss. Several mechanisms associated with the iron-induced death of dopaminergic cells have been described. Ferroptosis is an iron-dependent, regulated cell death process that was recently described in cancer.
View Article and Find Full Text PDFThis study aims to develop a cellular metabolomics model that reproduces the pathophysiological conditions found in amyotrophic lateral sclerosis in order to improve knowledge of disease physiology. We used a co-culture model combining the motor neuron-like cell line NSC-34 and the astrocyte clone C8-D1A, with each over-expressing wild-type or G93C mutant human SOD1, to examine amyotrophic lateral sclerosis (ALS) physiology. We focused on the effects of mutant human SOD1 as well as oxidative stress induced by menadione on intracellular metabolism using a metabolomics approach through gas chromatography coupled with mass spectrometry (GC-MS) analysis.
View Article and Find Full Text PDFThe vasculature of bone marrow differs from that in other organs, and its characteristics should be considered when exploring the medullar angiogenesis associated with hematological malignancies. We show here that the human bone marrow sinusoidal cell line HBME-1 has a specific expression pattern of angiogenic factors and receptors, characterized by a unique VEGFR3(+), Tie2(-) signature, that resembles the in vivo pattern. Moreover, the HBME-1 cultured for up to 3 days in hypoxic conditions, similar to those found in the bone marrow, specifically downregulated expression of VEGFR1, VEGFR2 and ETAR.
View Article and Find Full Text PDFThe role of angiogenesis in acute leukaemia has been discussed since the cloning of the gene of vascular endothelial growth factor (VEGF) from the acute myelogenous leukemia cell line (HL60) and, thereafter, when the first studies reported increased bone marrow vascularity and elevation of angiogenic cytokines in acute lymphoblastic leukaemia (ALL). VEGF and basic fibroblast growth factor (bFGF) are the major proangiogenic cytokines that have been studied, and evaluation of their prognostic impact in childhood ALL has been reported in several studies, though with controversial results. The antiangiogenic response, contributing to the angiogenic balance, has scarcely been reported.
View Article and Find Full Text PDFAcute lymphoblastic leukaemia (ALL) is characterized by malignant cell infiltration of bone marrow, requiring chemotactic response to SDF-1α. Using time-lapse video, we measured the velocity of ALL cells on fibronectin, and found that SDF-1α increased their migration activity for 2 h, but had no effect after 4h, following internalization of its receptor CXCR4. Transfection of ALL cells with dominant-negative Rac1 mutant significantly prolonged their chemotactic response to SDF-1α, and this effect was associated with an alteration of CXCR4 internalization.
View Article and Find Full Text PDF