Understanding brain-behavior relationships is the core goal of cognitive neuroscience. However, these relationships-especially those related to complex cognitive and psychopathological behaviors-have recently been shown to suffer from very small effect sizes (0.1 or less), requiring potentially thousands of participants to yield robust findings.
View Article and Find Full Text PDFParcellations of resting-state functional magnetic resonance imaging (rs-fMRI) data are widely used to create topographical maps of functional networks in the human brain. While such network maps are highly useful for studying brain organization and function, they usually require large sample sizes to make them, thus creating practical limitations for researchers that would like to carry out parcellations on data collected in their labs. Furthermore, it can be difficult to quantitatively evaluate the results of a parcellation since networks are usually identified using a clustering algorithm, like principal components analysis, on the results of a single group-averaged connectivity map.
View Article and Find Full Text PDFA large portion of human knowledge comprises "abstract" concepts that lack readily perceivable properties (e.g., "love" and "justice").
View Article and Find Full Text PDFBackground: Researchers studying autism spectrum disorder (ASD) lack a comprehensive map of the functional network topography in the ASD brain. We used high-quality resting state functional MRI (rs-fMRI) connectivity data and a robust parcellation routine to provide a whole-brain map of functional networks in a group of seventy individuals with ASD and a group of seventy typically developing (TD) individuals.
Methods: The rs-fMRI data were collected using an imaging sequence optimized to achieve high temporal signal-to-noise ratio (tSNR) across the whole-brain.
It is well-established that individuals with autism exhibit atypical functional brain connectivity. However, the role this plays in naturalistic social settings has remained unclear. Atypical patterns may reflect core deficits or may instead compensate for deficits and promote adaptive behavior.
View Article and Find Full Text PDFNeuroimaging studies of individuals with autism spectrum disorders (ASDs) consistently find an aberrant pattern of reduced laterality in brain networks that support functions related to social communication and language. However, it is unclear how the underlying functional organization of these brain networks is altered in ASD individuals. We tested four models of reduced laterality in a social communication network in 70 ASD individuals (14 females) and a control group of the same number of tightly matched typically developing (TD) individuals (19 females) using high-quality resting-state fMRI data and a method of measuring patterns of functional laterality across the brain.
View Article and Find Full Text PDFPrism adaptation (PA) is a form of visuomotor training that produces both sensorimotor and cognitive aftereffects depending on the direction of the visual displacement. Recently, a neural framework explaining both types of PA-induced aftereffects has been proposed, but direct evidence for it is lacking. We employed Structural Equation Modeling (SEM), a form of effective connectivity analysis, to establish directionality among connected nodes of the brain network thought to subserve PA.
View Article and Find Full Text PDFStudies of resting-state functional connectivity in young people with Down syndrome (DS) have yielded conflicting results. Some studies have found increased connectivity while others have found a mix of increased and decreased connectivity. No studies have examined whole-brain connectivity at the voxel level in youth with DS during an eyes-open resting-state design.
View Article and Find Full Text PDFRecent years have seen an increase in the use of multi-echo fMRI designs by cognitive neuroscientists. Acquiring multiple echoes allows one to increase contrast-to-noise; reduce signal dropout and thermal noise; and identify nuisance signal components in BOLD data. At the same time, multi-echo acquisitions increase data processing complexity and may incur a cost to the temporal and spatial resolution of the acquired data.
View Article and Find Full Text PDFObject repetition commonly leads to long-lasting improvements in identification speed and accuracy, a behavioral facilitation referred to as "repetition priming". Neuroimaging and non-invasive electromagnetic stimulation studies have most often implicated the involvement of left lateral frontal cortex in repetition priming, although convergent evidence from neuropsychological studies is lacking. In the current study, we examine the impact of surgical resection for the treatment of epilepsy on the magnitude of repetition priming at relatively short-term (30-60 min delay) and long-term (3 months) delays in 41 patients with varying seizure foci and resection locations.
View Article and Find Full Text PDFJ Neuropsychiatry Clin Neurosci
November 2021
Objective: Persistent fatigue is common among military servicemembers returning from deployment, especially those with a history of mild traumatic brain injury (mTBI). The purpose of this study was to characterize fatigue following deployment using the Multidimensional Fatigue Inventory (MFI), a multidimensional self-report instrument. The study was developed to test the hypothesis that if fatigue involves disrupted effort/reward processing, this should manifest as altered basal ganglia functional connectivity as observed in other amotivational states.
View Article and Find Full Text PDFAlthough the anterior temporal lobe (ATL) comprises several anatomic and functional subdivisions, it is often reduced to a homogeneous theoretical entity, such as a domain-general convergence zone, or "hub," for semantic information. Methodological limitations are largely to blame for the imprecise mapping of function to structure in the ATL. There are two major obstacles to using fMRI to identify the precise functional organization of the ATL: the difficult choice of stimuli and tasks to activate, and dissociate, specific regions within the ATL; and poor signal quality because of magnetic field distortions near the sinuses.
View Article and Find Full Text PDFKlinefelter syndrome (47, XXY; henceforth: XXY syndrome) is a high-impact but poorly understood genetic risk factor for neuropsychiatric impairment. Here, we provide the first study to map alterations of functional brain connectivity in XXY syndrome and relate these changes to brain anatomy and psychopathology. We used resting-state functional magnetic resonance imaging data from 75 individuals with XXY and 84 healthy XY males to 1) implement a brain-wide screen for altered global resting-state functional connectivity (rsFC) in XXY versus XY males and 2) decompose these alterations through seed-based analysis.
View Article and Find Full Text PDFStimulus identification commonly improves with repetition over long delays ("repetition priming"), whereas neural activity commonly decreases ("repetition suppression"). Multiple models have been proposed to explain this brain-behavior relationship, predicting alterations in functional and/or effective connectivity (Synchrony and Predictive Coding models), in the latency of neural responses (Facilitation model), and in the relative similarity of neural representations (Sharpening model). Here, we test these predictions with fMRI during overt and covert naming of repeated and novel objects.
View Article and Find Full Text PDFThe necessity of the human hippocampus for remote autobiographical recall remains fiercely debated. The standard model of consolidation predicts a time-limited role for the hippocampus, but the competing multiple trace/trace transformation theories posit indefinite involvement. Lesion evidence remains inconclusive, and the inferences one can draw from functional MRI (fMRI) have been limited by reliance on covert (silent) recall, which obscures dynamic, moment-to-moment content of retrieved memories.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2021
Previous studies have shown that the conceptual representation of food involves brain regions associated with taste perception. The specificity of this response, however, is unknown. Does viewing pictures of food produce a general, nonspecific response in taste-sensitive regions of the brain? Or is the response specific for how a particular food tastes? Building on recent findings that specific tastes can be decoded from taste-sensitive regions of insular cortex, we asked whether viewing pictures of foods associated with a specific taste (e.
View Article and Find Full Text PDFHumans can vividly recall and re-experience events from their past, and these are commonly referred to as episodic or autobiographical memories. fMRI experiments reliably associate autobiographical event recall with activity in a network of "default" or "core" brain regions. However, as prior studies have relied on covert (silent) recall procedures, current understanding may be hampered by methodological limitations that obscure dynamic effects supporting moment-to-moment content retrieval.
View Article and Find Full Text PDFHemispatial neglect is thought to result from disruption of interhemispheric equilibrium. Right hemisphere lesions deactivate the right frontoparietal network and hyperactivate the left via release from interhemispheric inhibition. Support for this putative mechanism comes from neuropsychological evidence as well as transcranial magnetic stimulation (TMS) studies in healthy subjects, in whom right posterior parietal cortex (PPC) inhibition causes neglect-like, rightward, visuospatial bias.
View Article and Find Full Text PDFIntroduction: The purpose of this study was to explore the effect of low testosterone level on whole-brain resting state (RS) connectivity in male veterans with symptoms such as sleep disturbance, fatiguability, pain, anxiety, irritability, or aggressiveness persisting after mild traumatic brain injury (mTBI). Follow-up analyses were performed to determine if sleep scores affected the results.
Materials And Methods: In our cross-sectional design study, RS magnetic resonance imaging scans on 28 veterans were performed, and testosterone, sleep quality, mood, and post-traumatic stress symptoms were measured.
Image quality control (QC) is a critical and computationally intensive component of functional magnetic resonance imaging (fMRI). Artifacts caused by physiologic signals or hardware malfunctions are usually identified and removed during data processing offline, well after scanning sessions are complete. A system with the computational efficiency to identify and remove artifacts during image acquisition would permit rapid adjustment of protocols as issues arise during experiments.
View Article and Find Full Text PDFPrism adaptation (PA) alters spatial cognition according to the direction of visual displacement by temporarily modifying sensorimotor mapping. Right-shifting prisms (right PA) improve neglect of left visual field in patients, possibly by decreasing activity in the left hemisphere and increasing it in the right. Left PA shifts attention rightward in healthy individuals by an opposite mechanism.
View Article and Find Full Text PDFBehavioral responses to a perceptual stimulus are typically faster with repeated exposure to the stimulus (behavioral priming). This implicit learning mechanism is critical for survival but impaired in a variety of neurological disorders, including Alzheimer's disease. Many studies of the neural bases for behavioral priming have encountered an interesting paradox: in spite of faster behavioral responses, repeated stimuli usually elicit weaker neural responses (repetition suppression).
View Article and Find Full Text PDFIn the mammalian brain, the insula is the primary cortical substrate involved in the perception of taste. Recent imaging studies in rodents have identified a "gustotopic" organization in the insula, whereby distinct insula regions are selectively responsive to one of the five basic tastes. However, numerous studies in monkeys have reported that gustatory cortical neurons are broadly-tuned to multiple tastes, and tastes are not represented in discrete spatial locations.
View Article and Find Full Text PDF