Knowledge of the stage-discharge rating curve is useful in designing and planning flood warnings; thus, developing a reliable stage-discharge rating curve is a fundamental and crucial component of water resource system engineering. Since the continuous measurement is often impossible, the stage-discharge relationship is generally used in natural streams to estimate discharge. This paper aims to optimize the rating curve using a generalized reduced gradient (GRG) solver and the test the accuracy and applicability of the hybridized linear regression (LR) with other machine learning techniques, namely, linear regression-random subspace (LR-RSS), linear regression-reduced error pruning tree (LR-REPTree), linear regression-support vector machine (LR-SVM) and linear regression-M5 pruned (LR-M5P) models.
View Article and Find Full Text PDF