Human papillomavirus type 31 (HPV31) is detected less frequently in cervical cancer than two major causative types, HPV16 and HPV18. Here, we report a comprehensive analysis of HPV31 genome sequences in cervical lesions collected from Japanese women. Of 52 HPV31-positive cervical specimens analyzed by deep sequencing, 43 samples yielded complete genome sequences of around 7900 base pairs and 9 samples yielded partially deleted genome sequences.
View Article and Find Full Text PDFBackground: Human papillomavirus (HPV) type 67 is phylogenetically classified into Alphapapillomavirus species 9 (alpha-9) together with other carcinogenic types (HPV16, 31, 33, 35, 52 and 58), but is the only alpha-9 type defined as possibly carcinogenic. This study aimed to determine whole-genome sequences of HPV67 isolated from Japanese women with cervical cancer or cervical intraepithelial neoplasia (CIN) to better understand the genetic basis of the oncogenic potential of HPV67.
Methods: Total cellular DNA isolated from cervical exfoliated cells that were single positive for HPV67 (invasive cervical cancer, n = 2; CIN3, n = 6; CIN 2, n = 1; CIN1, n = 2; the normal cervix, n = 1) was subjected to PCR to amplify HPV67 DNA, followed by next generation sequencing to determine the complete viral genome sequences.
Human papillomavirus (HPV) is a sexually transmitted virus with an approximately 8-kilo base DNA genome, which establishes long-term persistent infection in anogenital tissues. High levels of genetic variations, including viral genotypes and intra-type variants, have been described for HPV genomes, together with geographical differences in the distribution of genotypes and variants. Here, by employing a maximum likelihood method, we performed phylogenetic analyses of the complete genome sequences of HPV16, HPV18 and HPV58 available from GenBank ( = 627, 146 and 157, respectively).
View Article and Find Full Text PDF