Phosphorus (P) losses from tile-drained agricultural fields may degrade surface water quality by accelerating eutrophication. Among the different edge-of-field technologies, compact filter systems using different filter materials have been identified as potentially effective solutions for removing P from drainage water before discharge downstream. This study investigated the long-term (>696 days) P removal efficiency of 5 different filter materials in a column setup, using artificial drainage water (pH 6).
View Article and Find Full Text PDFPhosphorus losses from agriculture have long generated concern due to the ecological impact on surface waters. Here tile-drained agricultural catchments are a critical source for concentrating and transporting phosphorus bioavailable forms or dissolved reactive phosphorus (DRP). Hence, edge-of-field technologies have been introduced to reduce DRP loads.
View Article and Find Full Text PDFVegetated buffer strips (VBS) between agricultural areas and surface waters are important retention areas for eroded particulate P through which they may obtain critically high degrees of P saturation imposing high risk of soluble P leaching. We tested topsoil removal and three harvesting frequencies (once, twice, or four times per year) of natural buffer vegetation to reduce P leaching with the aim to offset erosional P accumulation and high degrees of P saturation. We used a simple numerical time-step model to estimate changes in VBS soil P levels with and without harvest.
View Article and Find Full Text PDF