Conservation objectives for non-breeding coastal birds (shorebirds and wildfowl) are determined from their population size at coastal sites. To advise coastal managers, models must predict quantitatively the effects of environmental change on population size or the demographic rates (mortality and reproduction) that determine it. As habitat association models and depletion models are not able to do this, we developed an approach that has produced such predictions thereby enabling policy makers to make evidence-based decisions.
View Article and Find Full Text PDFIntroductions of non-native species are seen as major threats to ecosystem function and biodiversity. However, invasions of aquatic habitats by non-native species are known to benefit generalist consumers that exhibit dietary switches and prey upon the exotic species in addition to or in preference to native ones. There is, however, little knowledge concerning the population-level implications of such dietary changes.
View Article and Find Full Text PDFIn behavior-based individual-based models (IBMs), demographic functions are emergent properties of the model and are not built into the model structure itself, as is the case with the more widely used demography-based IBMs. Our behavior-based IBM represents the physiology and behavioral decision making of individual animals and, from that, predicts how many survive the winter nonbreeding season, an important component of fitness. This paper provides the first test of such a model by predicting the change in winter mortality of a charadriid shorebird following removal of intertidal feeding habitat, the main effect of which was to increase bird density.
View Article and Find Full Text PDFAs field determinations take much effort, it would be useful to be able to predict easily the coefficients describing the functional response of free-living predators, the function relating food intake rate to the abundance of food organisms in the environment. As a means easily to parameterise an individual-based model of shorebird Charadriiformes populations, we attempted this for shorebirds eating macro-invertebrates. Intake rate is measured as the ash-free dry mass (AFDM) per second of active foraging; i.
View Article and Find Full Text PDFIn a number of extensive coastal areas in northwest Europe, large numbers of long-lived migrant birds eat shellfish that are also commercially harvested. Competition between birds and people for this resource often leads to conflicts between commercial and conservation interests. One policy to prevent shellfishing from harming birds is to ensure that enough food remains after harvesting to meet most or all of their energy demands.
View Article and Find Full Text PDFThe optimal diet model entails that foragers look beyond the individual prey encounter, to at least the level of intake rate across a bout of foraging, but optimization over a longer time remains controversial. In this paper, we show how oystercatchers increase their intake over the longer term using mussel colour as a cue. Wintering oystercatchers Haematopus ostralegus feed extensively on mussels Mytilus edulis in the estuaries of southern Britain.
View Article and Find Full Text PDFWhen juvenile oystercatchers, Haematopus ostralegus, first arrived on the wintering grounds in August and September, they regularly stole mussels, Mytilus edulis, from other, mainly older, oystercatchers. By October, however, juveniles stole far fewer mussels and found almost all their mussels independently for themselves on the mussel bed. Although stealing a mussel was always less profitable than taking a mussel from the mussel bed, a simple rate-maximizing optimality model showed that, in August and September, juveniles increased both their net and gross rates of energy intake by stealing because they were rather inefficient at foraging for themselves.
View Article and Find Full Text PDFFolia Primatol (Basel)
September 1972