A long noncoding RNA, nuclear paraspeckle assembly transcript 1 (NEAT1) variant 1 (NEAT1v1), confers radioresistance to hepatocellular carcinoma (HCC) cells by inducing autophagy via γ-aminobutyric acid A receptor-associated protein (GABARAP). Radiation induces oxidative stress to damage cellular components and organelles, but it remains unclear how NEAT1v1 protects HCC cells from radiation-induced oxidative stress via autophagy. To address this, we precisely investigated NEAT1v1-induced autophagy in irradiated HCC cell lines.
View Article and Find Full Text PDFA long noncoding RNA (lncRNA), () (), is involved in the maintenance of cancer stem cells (CSCs) in hepatocellular carcinoma (HCC). CSCs are suggested to play important roles in therapeutic resistance. Therefore, we investigated whether is involved in the sensitivity to radiation therapy in HCC.
View Article and Find Full Text PDFIntroduction: Transplantation of IC-2-engineered bone marrow-derived mesenchymal stem cell (BM-MSC) sheets (IC-2 sheets) was previously reported to potentially reduce liver fibrosis.
Methods: This study prepared IC-2-engineered cell sheets from multiple lots of BM-MSCs and examined the therapeutic effects of these cell sheets on liver fibrosis induced by carbon tetrachloride in mice. The predictive factors for antifibrotic effect on liver fibrosis were tried to identify in advance.
Mammary serine protease inhibitor (maspin) is a tumor suppressor gene that is downregulated during carcinogenesis and breast cancer progression. While the nuclear localization of maspin is essential for tumor suppression, we previously reported that the cytoplasmic localization of maspin was significantly correlated with poor prognosis in breast cancer patients. To understand the mechanisms that underlie oncogenic role of cytoplasmic maspin, we studied its biological function in breast cancer cell lines.
View Article and Find Full Text PDFTumor immunity represents a new avenue for cancer therapy. Immune checkpoint inhibitors have successfully improved outcomes in several tumor types. In addition, currently, immune cell-based therapy is also attracting significant attention.
View Article and Find Full Text PDFYonago Acta Med
February 2021
Hepatocellular carcinoma (HCC) is a malignant tumor with poor prognosis, and is one of the leading causes of cancer-related deaths worldwide. Recently, the development of therapeutic drugs via novel mechanisms of action, involving molecular-targeted drugs and immune checkpoint inhibitors, has progressed in the field of HCC. However, the recurrence rate remains high, and further improvement of the prognosis of patients with HCC is urgently needed.
View Article and Find Full Text PDFBackground: Although type 2 diabetes mellitus (T2DM) is a known risk factor for hepatocellular carcinoma (HCC) development, the annual incidence in diabetes patients is far below the threshold of efficient surveillance. This study aimed to elucidate the risk factors for HCC in diabetic patients and to determine the best criteria to identify surveillance candidates.
Methods: The study included 239 patients with T2DM who were diagnosed with non-viral HCC between 2010 and 2015, with ≥ 5 years of follow-up at diabetes clinics of 81 teaching hospitals in Japan before HCC diagnosis, and 3277 non-HCC T2DM patients from a prospective cohort study, as controls.
The liver is the major organ maintaining metabolic homeostasis in animals during shifts between fed and fasted states. Circadian oscillations in peripheral tissues including the liver are connected with feeding-fasting cycles. We generated transgenic mice with hepatocyte specific E4BP4, D-box negative regulator, overexpression.
View Article and Find Full Text PDFCD44, a cancer stem cell (CSC) marker, is required for maintaining CSC properties in hepatocellular carcinoma (HCC). Nuclear enriched abundant transcript 1 (NEAT1), a long noncoding RNA (lncRNA), is an oncogenic driver in HCC. In the present study, we investigated the significance of the gene in association with CD44 expression in liver CSCs of human HCC cell lines.
View Article and Find Full Text PDFBackground: Liver fibrosis progresses to decompensated liver cirrhosis, for which medical needs remain unmet. We recently developed IC-2, a small-molecule compound that suppresses Wnt/β-catenin signaling, and found that IC-2 also suppresses liver fibrosis. In this study, we performed three-step screening of newly synthesized IC-2 derivatives to identify other small-molecule compounds that suppress liver fibrosis.
View Article and Find Full Text PDFRenal fibrosis compromises kidney function, and it is a risk factor for chronic kidney disease (CKD). CKD ultimately progresses to end-stage kidney disease that can be cured only by kidney transplantation. Owing to the increasing number of CKD patients, effective treatment strategies are urgently required for renal fibrosis.
View Article and Find Full Text PDFThe 18th Congress of the Japanese Society for Regenerative Medicine was held from March 21-23, 2019, at Kobe International Conference Center (Hyogo Prefecture) with 3,576 participants. The theme of this congress was "Message from the Birthplace of Regenerative Medicine" with expectation of disseminating the message of 'saving patients with regenerative medicine' for the future. With this theme, this congress aimed to provide opportunity for accelerating the development of this field through exchanging information among people from all participants (including individuals from academia, various industries, and regulatory authorities).
View Article and Find Full Text PDFUnconventional prefoldin RNA polymerase II subunit 5 interactor (URI1) has emerged as an oncogenic driver in hepatocellular carcinoma (HCC). Although the hepatitis B virus (HBV) represents the most common etiology of HCC worldwide, it is unknown whether URI1 plays a role in HBV-related HCC (HCC-B). In the present study, we investigated URI1 expression and its underlying mechanism in HCC-B tissues and cell lines.
View Article and Find Full Text PDFChronic hepatitis viral infection, alcoholic intoxication, and obesity cause liver fibrosis, which progresses to decompensated liver cirrhosis, a disease for which medical demands cannot be met. Since there are currently no approved anti-fibrotic therapies for established liver fibrosis, the development of novel modalities is required to improve patient prognosis. In this study, we clarified the anti-fibrotic effects of cell sheets produced from human bone marrow-derived mesenchymal stem cells (MSCs) incubated on a temperature-sensitive culture dish with the chemical compound IC-2.
View Article and Find Full Text PDFHepatocellular carcinoma (HCC) is one of the leading causes of cancer death worldwide. Cancer stem cells (CSCs) have attracted attention as a novel therapeutic target for cancer because they play important roles in the development and aggravation of cancer. CD44 is expressed as a standard isoform (CD44s) and several variant isoforms.
View Article and Find Full Text PDFIntroduction: We previously reported that transplantation of hepatic cell sheets from human bone marrow-derived mesenchymal stem cells (BM-MSCs) with hexachlorophene, a Wnt/β-catenin signaling inhibitor, ameliorated acute liver injury. In a further previous report, we identified IC-2, a newly synthesized derivative of the Wnt/β-catenin signaling inhibitor ICG-001, as a potent inducer of hepatic differentiation of BM-MSCs.
Methods: We manufactured hepatic cell sheets by engineering from human BM-MSCs using the single small molecule IC-2.
Telomerase reverse transcriptase (TERT) promotes immortalization by protecting telomeres in cancer cells. Mutation of the TERT promoter is one of the most common genetic alterations in hepatocellular carcinoma (HCC), indicating that TERT upregulation is a critical event in hepatocarcinogenesis. Regulators of TERT transcription are, therefore, predicted to be plausible targets for HCC treatment.
View Article and Find Full Text PDFBackground/aim: Cancer stem cells (CSCs) are associated with prognosis of hepatocellular carcinoma (HCC). In our previous study, we created cDNA microarray databases on the CSC population of human HuH7 cells. In the present study, we identified genes that might serve as prognostic markers of HCC by employing existing databases.
View Article and Find Full Text PDFBackground/aim: Colorectal cancer (CRC) is one of the most malignant types of cancer worldwide. Recent studies suggest that a small subpopulation of cells, so-called cancer stem cells (CSCs), promote the high metastasis and relapse associated with CRC. WNT/β-catenin signaling plays a critical role in CSC maintenance.
View Article and Find Full Text PDFBackground/aim: The presence of cancer stem cells (CSCs) contributes to metastasis, recurrence, and resistance to chemo/radiotherapy in hepatocellular carcinoma (HCC). The WNT signaling pathway is reportedly linked to the maintenance of stemness of CSCs. In the present study, in order to eliminate liver CSCs and improve the prognosis of patients with HCC, we explored whether small-molecule compounds targeting WNT signaling pathway suppress liver CSCs.
View Article and Find Full Text PDFNon-small cell lung cancer (NSCLC) accounts for >85% of incidences of lung cancer, for which the predicted 5-year survival rates are low and recurrence rates remain high. Although it has been reported that the patients with SCLC cells that possess the cluster of differentiation (CD) 117 marker exhibited poor prognosis and poor response to chemotherapy, no studies concerning the association of CD117 expression with prognosis of the patients with NSCLC have been reported. An study reportedly revealed that CD117-positive cell populations in NSCLC cell lines exhibited cancer stem cell (CSC) phenotypes including self-renewal and chemoresistance.
View Article and Find Full Text PDFActivation of hepatic stellate cells (HSCs) is the effector factor of hepatic fibrosis and hepatocellular carcinoma (HCC) development. Accumulating evidence suggests that retinoic acids (RAs), derivatives of vitamin A, contribute to prevention of liver fibrosis and carcinogenesis, however, regulatory mechanisms of RAs still remain exclusive. To elucidate RA signaling pathway, we previously performed a genome-wide screening of RA-responsive genes by in silico analysis of RA-response elements, and identified 26 RA-responsive genes.
View Article and Find Full Text PDF