Publications by authors named "Gorvel J"

The genus Pseudochrobactrum encompasses free-living bacteria phylogenetically close to Ochrobactrum opportunistic pathogens and to Brucella, facultative intracellular parasites causing brucellosis, a worldwide-extended and grave zoonosis. Recently, Pseudochrobactrum strains were isolated from Brucella natural hosts on Brucella selective media, potentially causing diagnostic confusions. Strikingly, P.

View Article and Find Full Text PDF

Plasmacytoid dendritic cells (pDC) are the major producer of type 1 IFN in response to TLR7 agonists. Aberrant TLR7 activation and type 1 IFN expression by pDCs are linked to the pathogenesis of certain types of autoimmune diseases, including systemic lupus erythematosus (SLE). This study investigated the underlying mechanisms for TLR7-mediated cytokine expression by pDCs using a late endosome trafficking inhibitor, EGA (4-bromobenzaldehyde -(2,6-dimethylphenyl) semicarbazone).

View Article and Find Full Text PDF

Bacteria of the genus Brucella are facultative intracellular parasites that cause brucellosis, a severe animal and human disease. Recently, a group of taxonomists merged the brucellae with the primarily free-living, phylogenetically related spp. in the genus Brucella.

View Article and Find Full Text PDF

Severe acute malnutrition (SAM) is a multifactorial disease affecting millions of children worldwide. It is associated with changes in intestinal physiology, microbiota, and mucosal immunity, emphasizing the need for multidisciplinary studies to unravel its full pathogenesis. We established an experimental model in which weanling mice fed a high-deficiency diet mimic key anthropometric and physiological features of SAM in children.

View Article and Find Full Text PDF

Peyer's patches (PPs) are secondary lymphoid organs in contact with the external environment via the intestinal lumen, thus combining antigen sampling and immune response initiation sites. Therefore, they provide a unique opportunity to study the entire process of phagocyte differentiation and activation in vivo. Here, we deciphered the transcriptional and spatial landscape of PP phagocyte populations from their emergence in the tissue to their final maturation state at homeostasis and under stimulation.

View Article and Find Full Text PDF

So far, hematopoietic stem cells (HSC) are considered the source of mature immune cells, the latter being the only ones capable of mounting an immune response. Recent evidence shows HSC can also directly sense cytokines released upon infection/inflammation and pathogen-associated molecular pattern interaction while keeping a long-term memory of previously encountered signals. Direct sensing of danger signals by HSC induces early myeloid commitment, increases myeloid effector cell numbers, and contributes to an efficient immune response.

View Article and Find Full Text PDF

Plasmacytoid dendritic cells (pDCs) exhibit bifurcated cytokine responses to TLR9 agonists, an IRF7-mediated type 1 IFN response or a pro-inflammatory cytokine response the activation of NF-κB. This bifurcated response has been hypothesized to result from either distinct signaling endosomes or endo-lysosomal trafficking delay of TLR9 agonists allowing for autocrine signaling to affect outcomes. Utilizing the late endosome trafficking inhibitor, EGA, we assessed the bifurcated cytokine responses of pDCs to TLR9 stimulation.

View Article and Find Full Text PDF

The cell nucleus is a primary target for intracellular bacterial pathogens to counteract immune responses and hijack host signalling pathways to cause disease. Here we identify two Brucella abortus effectors, NyxA and NyxB, that interfere with host protease SENP3, and this facilitates intracellular replication of the pathogen. The translocated Nyx effectors directly interact with SENP3 via a defined acidic patch (identified from the crystal structure of NyxB), preventing nucleolar localisation of SENP3 at late stages of infection.

View Article and Find Full Text PDF

Introduction: The emergence of several SARS-CoV-2 variants during the COVID pandemic has revealed the impact of variant diversity on viral infectivity and host immune responses. While antibodies and CD8 T cells are essential to clear viral infection, the protective role of innate immunity including macrophages has been recognized. The aims of our study were to compare the infectivity of different SARS-CoV-2 variants in monocyte-derived macrophages (MDM) and to assess their activation profiles and the role of ACE2 (Angiotensin-converting enzyme 2), the main SARS-CoV-2 receptor.

View Article and Find Full Text PDF

Brucellosis is considered one of the major zoonoses worldwide, constituting a critical livestock and human health concern with a huge socio-economic burden. genus, its etiologic agent, is composed of intracellular bacteria that have evolved a prodigious ability to elude and shape host immunity to establish chronic infection. 's intracellular lifestyle and pathogen-associated molecular patterns, such as its specific lipopolysaccharide (LPS), are key factors for hiding and hampering recognition by the immune system.

View Article and Find Full Text PDF

The intracellular pathogens of the genus are phylogenetically close to , a diverse group of free-living bacteria with a few species occasionally infecting medically compromised patients. A group of taxonomists recently included all organisms in the genus based on global genome analyses and alleged equivalences with genera such as . Here, we demonstrate that such equivalencies are incorrect because they overlook the complexities of pathogenicity.

View Article and Find Full Text PDF

When intracellular, pathogenic Salmonella reside in a membrane compartment composed of interconnected vacuoles and tubules, the formation of which depends on the translocation of bacterial effectors into the host cell. Cytoskeletons and their molecular motors are prime targets for these effectors. In this study, we show that the microtubule molecular motor KIF1Bβ (a splice variant of KIF1B), a member of the kinesin-3 family, is a key element for the establishment of the Salmonella replication niche as its absence is detrimental to the stability of bacterial vacuoles and the formation of associated tubules.

View Article and Find Full Text PDF

Female sex hormones affect the immune response in the lower female genital tract. To understand their mechanisms of action, it is essential to define cell types expressing estrogen receptor (ER) and/or progesterone receptor (PR) in the human vaginal mucosa (VM). Here, we report that none of the dendritic cell (DC) subsets in the human VM expressed ERα or PR in situ.

View Article and Find Full Text PDF

Whooping cough is a severe, highly contagious disease of the human respiratory tract, caused by . The pathogenicity requires several virulence factors, including toxin (PTX), a key component of current available vaccines. Current vaccines do not induce mucosal immunity.

View Article and Find Full Text PDF

Perturbation of the endoplasmic reticulum (ER), a central organelle of the cell, can have critical consequences for cellular homeostasis. An elaborate surveillance system known as ER quality control ensures that cells can respond and adapt to stress via the unfolded protein response (UPR) and that only correctly assembled proteins reach their destination. Interestingly, several bacterial pathogens hijack the ER to establish an infection.

View Article and Find Full Text PDF

Initially intended for nutrient uptake, phagocytosis represents a central mechanism of debris removal and host defense against invading pathogens through the entire animal kingdom. In vertebrates and also many invertebrates, macrophages (MFs) and MF-like cells (e.g.

View Article and Find Full Text PDF

is an intracellular bacterium that causes abortion, reproduction failure in livestock and leads to a debilitating flu-like illness with serious chronic complications if untreated in humans. As a successful intracellular pathogen, has developed strategies to avoid recognition by the immune system of the host and promote its survival and replication. In vivo, Brucellae reside mostly within phagocytes and other cells including trophoblasts, where they establish a preferred replicative niche inside the endoplasmic reticulum.

View Article and Find Full Text PDF

T-bet is a transcription factor known to initiate and coordinate the gene expression program during Th1 differentiation, which is crucial for clearance of intracellular pathogens. Q fever is a worldwide zoonosis caused by . This bacterium is transmitted to humans by aerosol.

View Article and Find Full Text PDF
Article Synopsis
  • One quarter of all cancers are associated with infectious diseases, with limited research on the role of bacterial infections in cancer compared to viral infections.
  • Evidence suggests a link between certain bacteria and non-Hodgkin's lymphoma (NHL), the most common hematologic cancer, indicating that these bacteria could be present in lymphoma tissue where inflammation occurs.
  • Observations of lymphoma remissions during antimicrobial treatments support the idea that bacteria may contribute to cancer development, urging clinicians to monitor these infections to catch potential lymphoma transformations early.
View Article and Find Full Text PDF

is an intracellular bacterial pathogen. The formation of its replication niche, which is composed of a vacuole associated with a network of membrane tubules, depends on the secretion of a set of bacterial effector proteins whose activities deeply modify the functions of the eukaryotic host cell. By recruiting and regulating the activity of the kinesin-1 molecular motor, effectors PipB2 and SifA play an essential role in the formation of the bacterial compartments.

View Article and Find Full Text PDF

serotype Typhimurium is a bacterium that causes gastroenteritis and diarrhea in humans. The genome of Typhimurium codes for diverse virulence factors, among which are the toxin-antitoxin (TA) systems. SehAB is a type II TA, where SehA is the toxin and SehB is the antitoxin.

View Article and Find Full Text PDF

Brucella species are facultative intracellular Gram-negative bacteria relevant to animal and human health. Their ability to establish an intracellular niche and subvert host cell pathways to their advantage depends on the delivery of bacterial effector proteins through a type IV secretion system. Brucella Toll/Interleukin-1 Receptor (TIR)-domain-containing proteins BtpA (also known as TcpB) and BtpB are among such effectors.

View Article and Find Full Text PDF

The monocyte-derived phagocytes termed LysoDCs are hallmarks of Peyer's patches, where their main function is to sample intestinal microorganisms. Here, we study their differentiation pathways in relation with their sampling, migratory, and T cell-priming abilities. Among four identified LysoDC differentiation stages displaying similar phagocytic activity, one is located in follicles, and the others reside in subepithelial domes (SED), where they proliferate and mature as they get closer to the epithelium.

View Article and Find Full Text PDF

The strategies by which intracellular pathogenic bacteria manipulate innate immunity to establish chronicity are poorly understood. Here, we show that Brucella abortus outer membrane protein Omp25 specifically binds the immune cell receptor SLAMF1 in vitro. The Omp25-dependent engagement of SLAMF1 by B.

View Article and Find Full Text PDF