Eight subjects were placed in a decompression chamber for 31 days at pressures from sea level (SL) to 8848 m altitude equivalent. Whole blood lipid peroxidation (LP) was increased at 6000 m by a mean of 23% (P<0.05), at 8000 m by 79% (P<0.
View Article and Find Full Text PDFObjective: To explore cerebral hemodynamics in 8 healthy volunteers in a hypobaric chamber up to the altitude of Mount Everest after a progressive stepwise decompression to 8,848 m.
Methods: Physiological, clinical, and transcranial Doppler data were collected after at least 3 days at 5,000, 6,000, and 7,000 m and within 4 hours of reaching 8,000 m and returning to sea level.
Results: Three subjects were excluded at 8,000 and 8,848 m because of acute neurological deficits.
Extreme environmental situations are useful tools for the investigation of the general processes of adaptation. Among such situations, high altitude of more than 3000 m produces a set of pathological disorders that includes both cerebral (cAS) and respiratory (RAS) altitude symptoms. High altitude exposure further induces anxiety responses and behavioural disturbances.
View Article and Find Full Text PDFHigh altitudes of more than 3,000 meters produce physiological disorders and adverse changes in mood states. In the present study, we report analyses of mood states and personality traits in eight experienced climbers participating in a 31-day period of confinement in hypobaric chamber and gradual decompression from sea level to 8,848 m (Experiment 'Everest-Comex 97'). The subjects were tested at 5,500 m and 6,500 m on Day 13, 5,000 m and 6,500 m on Day 24, and 8,000 m and 8,848 m altitude on Days 27 and 31.
View Article and Find Full Text PDFPercept Mot Skills
February 2000
Hypoxia is known to alter visual functions. In the present study, the effects of chronic hypobaric hypoxia upon visual color discrimination were studied in 8 subjects participating in a simulated climb from sea level (PO2 = 210 hPa) to 8,848 m (PO2 = 70 hPa) over a 31-day period of confinement in a decompression chamber ('Everst-Comex 97'). During these investigations, the subjects were required to discriminate between colors of different hue in the red, blue, and green ranges.
View Article and Find Full Text PDFExposure to high altitude induces physiological or pathological modifications that are not always clearly attributable to a specific environmental factor: hypoxia, cold, stress, inadequate food. The principal goal of hypobaric chamber studies is to determine the specific effect of hypoxia. Eight male volunteers ("altinauts"), aged 23 to 37 were selected.
View Article and Find Full Text PDFPsychomotor deficits are a prominent feature in subjects exposed to hypoxia. Eight subjects exposed to chronic hypoxia during a simulated climb to 8848 m (Everest-Comex 97) were investigated using both a simple psychomotor task (Purdue pegboard) and two complex psychomotor tasks including a recognition task of either a color stimulus (high semantic level) or an abstract sign (low semantic level). Exposure to hypoxic stress mainly produced psychomotor skills learning deficits compared to control study, with greater deficits in the complex psychomotor task.
View Article and Find Full Text PDF