Publications by authors named "Gorshkova I"

Population studies have found that a natural human apoA-I variant, apoA-I[K107del], is strongly associated with low HDL-C but normal plasma apoA-I levels. We aimed to reveal properties of this variant that contribute to its unusual phenotype associated with atherosclerosis. Our oil-drop tensiometry studies revealed that compared to WT, recombinant apoA-I[K107del] adsorbed to surfaces of POPC-coated triolein drops at faster rates, remodeled the surfaces to a greater extent, and was ejected from the surfaces at higher surface pressures on compression of the lipid drops.

View Article and Find Full Text PDF

Background: High burden of drug-resistant (DR) tuberculosis (TB) is a significant threat to national TB control programs all over the world and in the Russian Federation. Different Mycobacterium tuberculosis (MTB) genotypes are hypothesized to have specific characteristics affecting TB control programs. For example, Beijing strains are supposed to have higher mutation rates compared to strains of other genotypes and subsequently higher capability to develop drug-resistance.

View Article and Find Full Text PDF

ApoA-I activates LCAT that converts lipoprotein cholesterol to cholesteryl ester (CE). Molecular dynamic simulations suggested earlier that helices 5 of two antiparallel apoA-I molecules on discoidal HDL form an amphipathic tunnel for migration of acyl chains and unesterified cholesterol to the active sites of LCAT. Our recent crystal structure of Δ(185-243)apoA-I showed the tunnel formed by helices 5/5, with two positively charged residues arginine 123 positioned at the edge of the hydrophobic tunnel.

View Article and Find Full Text PDF

Hypertriglyceridemia (HTG) is an independent factor of atherosclerotic cardiovascular disease and a hallmark of many metabolic disorders. However, the molecular etiology of HTG is still largely unknown. In mice, severe HTG may be induced by expression of specific mutants of apolipoprotein (apo) A-I or wild type (WT) apoE4.

View Article and Find Full Text PDF

Introduction: Idiopathic pulmonary fibrosis (IPF) is characterised by accumulation of fibroblasts and myofibroblasts and deposition of extracellular matrix proteins. Sphingosine-1-phosphate (S1P) signalling plays a critical role in pulmonary fibrosis.

Methods: S1P lyase (S1PL) expression in peripheral blood mononuclear cells (PBMCs) was correlated with pulmonary functions and overall survival; used a murine model to check the role of S1PL on the fibrogenesis and a cell culture system to study the effect of S1PL expression on transforming growth factor (TGF)-β- and S1P-induced fibroblast differentiation.

View Article and Find Full Text PDF

We previously described how ceramide (Cer), a mediator of cell death, increases in the cerebrospinal fluid (CSF) of subarachnoid hemorrhage (SAH) patients. This study investigates the alterations of biochemical pathways involved in Cer homeostasis in SAH. Cer, dihydroceramide (DHC), sphingosine-1-phosphate (S1P), and the activities of acid sphingomyelinase (ASMase), neutral sphingomyelinase (NSMase), sphingomyelinase synthase (SMS), S1P-lyase, and glucosylceramide synthase (GCS) were determined in the CSF of SAH subjects and in brain homogenate of SAH rats.

View Article and Find Full Text PDF

Rationale: Sphingosine kinases (SphKs) 1 and 2 regulate the synthesis of the bioactive sphingolipid sphingosine-1-phosphate (S1P), an important lipid mediator that promotes cell proliferation, migration, and angiogenesis.

Objectives: We aimed to examine whether SphKs and their product, S1P, play a role in the development of pulmonary arterial hypertension (PAH).

Methods: SphK1(-/-), SphK2(-/-), and S1P lyase heterozygous (Sgpl1(+/-)) mice, a pharmacologic SphK inhibitor (SKI2), and a S1P receptor 2 (S1PR2) antagonist (JTE013) were used in rodent models of hypoxia-mediated pulmonary hypertension (HPH).

View Article and Find Full Text PDF

Hypoxia has been previously shown to inhibit the dihydroceramide (DHC) desaturase, leading to the accumulation of DHC. In this study, we used metabolic labeling with [3H]-palmitate, HPLC/MS/MS analysis, and specific inhibitors to show numerous sphingolipid changes after oxygen deprivation in cerebral microendothelial cells. The increased DHC, particularly long-chain forms, was observed in both whole cells and detergent-resistant membranes.

View Article and Find Full Text PDF

We found earlier that apoA-I variants that induced hypertriglyceridemia (HTG) in mice had increased affinity to TG-rich lipoproteins and thereby impaired their catabolism. Here, we tested whether a naturally occurring human apoA-I mutation, Lys107del, associated with HTG also promotes apoA-I binding to TG-rich particles. We expressed apoA-I[Lys107del] variant in Escherichia coli, studied its binding to TG-rich emulsion particles, and performed a physicochemical characterization of the protein.

View Article and Find Full Text PDF

The C1 domain, which represents the recognition motif on protein kinase C for the lipophilic second messenger diacylglycerol and its ultrapotent analogues, the phorbol esters, has emerged as a promising therapeutic target for cancer and other indications. Potential target selectivity is markedly enhanced both because binding reflects ternary complex formation between the ligand, C1 domain, and phospholipid, and because binding drives membrane insertion of the C1 domain, permitting aspects of the C1 domain surface outside the binding site, per se, to influence binding energetics. Here, focusing on charged residues identified in atypical C1 domains which contribute to their loss of ligand binding activity, we showed that increasing charge along the rim of the binding cleft of the protein kinase C δ C1 b domain raises the requirement for anionic phospholipids.

View Article and Find Full Text PDF

Elicitation of broadly neutralizing antibodies is essential for the development of a protective vaccine against HIV-1. However, the native HIV-1 envelope adopts a protected conformation that conceals highly conserved sites of vulnerability from antibody recognition. Although high-definition structures of the monomeric core of the envelope glycoprotein subunit gp120 and, more recently, of a stabilized soluble gp140 trimer have been solved, fundamental aspects related to the conformation and function of the native envelope remain unresolved.

View Article and Find Full Text PDF

Background: Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal disease with no effective medical therapies. Recent research has focused on identifying the biological processes essential to the development and progression of fibrosis, and on the mediators driving these processes. Lysophosphatidic acid (LPA), a biologically active lysophospholipid, is one such mediator.

View Article and Find Full Text PDF

G protein-coupled receptors (GPCR) are integral membrane proteins that transmit signals from external stimuli to the cell interior via activation of GTP-binding proteins (G proteins) thereby mediating key sensorial, hormonal, metabolic, immunological, and neurotransmission processes. Elucidating their structure and mechanism of interaction with extracellular and intracellular binding partners is of fundamental importance and highly relevant to rational design of new effective drugs. Surface plasmon resonance (SPR) has become a method of choice for studying biomolecular interactions at interfaces because measurements take place in real-time and do not require labeling of any of the interactants.

View Article and Find Full Text PDF

Rationale: Bioactive lipid mediators, derived from membrane lipid precursors, are released into the airway and airspace where they bind high-affinity cognate receptors and may mediate asthma pathogenesis. Lysophosphatidic acid (LPA), a bioactive lipid mediator generated by the enzymatic activity of extracellular autotaxin (ATX), binds LPA receptors, resulting in an array of biological actions on cell proliferation, migration, survival, differentiation, and motility, and therefore could mediate asthma pathogenesis.

Objectives: To define a role for the ATX-LPA pathway in human asthma pathogenesis and a murine model of allergic lung inflammation.

View Article and Find Full Text PDF

Bronchopulmonary dysplasia of the premature newborn is characterized by lung injury, resulting in alveolar simplification and reduced pulmonary function. Exposure of neonatal mice to hyperoxia enhanced sphingosine-1-phosphate (S1P) levels in lung tissues; however, the role of increased S1P in the pathobiological characteristics of bronchopulmonary dysplasia has not been investigated. We hypothesized that an altered S1P signaling axis, in part, is responsible for neonatal lung injury leading to bronchopulmonary dysplasia.

View Article and Find Full Text PDF

Aims: To test the role of sphingosine-1-phosphate (S1P) signaling system in the in vivo setting of resuscitation and survival after cardiac arrest.

Main Methods: A mouse model of potassium-induced cardiac arrest and resuscitation was used to test the importance of S1P homeostasis in resuscitation and survival. C57BL/6 and sphingosine kinase-1 knockout (SphK1-KO) female mice were arrested for 8 min then subjected to 5 minute CPR with epinephrine bolus given at 90s after the beginning of CPR.

View Article and Find Full Text PDF

Human peripheral cannabinoid receptor CB2, a G protein-coupled receptor (GPCR) involved in regulation of immune response has become an important target for pharmaceutical drug development. Structural and functional studies on CB2 may benefit from immobilization of the purified and functional receptor onto a suitable surface at a controlled density and, preferably in a uniform orientation. The goal of this project was to develop a generic strategy for preparation of functional recombinant CB2 and immobilization at solid interfaces.

View Article and Find Full Text PDF

Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive interstitial lung disease, wherein transforming growth factor β (TGF-β) and sphingosine-1-phosphate (S1P) contribute to the pathogenesis of fibrosis. However, the in vivo contribution of sphingosine kinase (SphK) in fibrotic processes has not been documented. Microarray analysis of blood mononuclear cells from patients with IPF and SphK1- or SphK2-knockdown mice and SphK inhibitor were used to assess the role of SphKs in fibrogenesis.

View Article and Find Full Text PDF

Two isoforms of sphingosine kinase, SK1 and SK2, catalyze the formation of the bioactive lipid sphingosine 1-phosphate (S1P) in mammalian cells. We have previously shown that treatment of androgen-sensitive LNCaP prostate cancer cells with a non-selective SK isoform inhibitor, 2-(p-hydroxyanilino)-4-(p-chlorophenyl)thiazole (SKi), induces the proteasomal degradation of SK1. This is concomitant with a significant increase in C22:0-ceramide and sphingosine levels and a reduction in S1P levels, resulting in the apoptosis of LNCaP cells.

View Article and Find Full Text PDF

We have previously shown that treatment of androgen-sensitive LNCaP cells with the sphingosine kinase (SK) inhibitor SKi (2-(p-hydroxyanilino)-4-(p-chlorophenyl)thiazole) induces the proteasomal degradation of two N-terminal variants of SK1 (SK1a and SK1b), increases C22:0-ceramide and diadenosine 5',5'''-P1,P3-triphosphate (Ap3A) and reduces S1P levels, and promotes apoptosis. We have now investigated the effects of three SK inhibitors (SKi, (S)-FTY720 vinylphosphonate, and (R)-FTY720 methyl ether) on metabolite and sphingolipid levels in androgen-sensitive LNCaP and androgen-independent LNCaP-AI prostate cancer cells. The 51 kDa N-terminal variant of SK1 (SK1b) evades the proteasome in LNCaP-AI cells, and these cells do not exhibit an increase in C22:0-ceramide or Ap3A levels and do not undergo apoptosis in response to SKi.

View Article and Find Full Text PDF

The application of optical biosensors in the study of macromolecular interactions requires immobilization of one binding partner to the surface. It is often highly desirable that the immobilization is uniform and does not affect the thermodynamic and kinetic binding parameters to soluble ligands. To achieve this goal, a variety of sensor surfaces, coupling strategies and surface chemistries are available.

View Article and Find Full Text PDF

Sphingoid base-1-phosphates represent a very low portion of the sphingolipid pool but are potent bioactive lipids in mammals. This study was undertaken to determine whether these lipids are produced in palmitate-treated pancreatic β cells and what role they play in palmitate-induced β cell apoptosis. Our lipidomic analysis revealed that palmitate at low and high glucose supplementation increased (dihydro)sphingosine-1-phosphate levels in INS-1 β cells.

View Article and Find Full Text PDF

Background And Purpose: The purpose of this study was to investigate changes in the cerebrospinal fluid sphingolipid profile in patients with subarachnoid hemorrhage in relation to the occurrence of symptomatic vasospasm and outcome at hospital discharge.

Methods: The ceramide profile in the cerebrospinal fluid was determined by mass spectrometry in control subjects and patients with Fisher 3 grade subarachnoid hemorrhage within 48 hours of the bleed. Patients were prospectively followed and subcategorized based on the occurrence of symptomatic vasospasm and modified Rankin Scale at discharge.

View Article and Find Full Text PDF

Sphingosine kinase 1 catalyses the formation of the bioactive lipid, sphingosine 1-phosphate and is a target for anti-cancer agents. We demonstrate here that 2-(p-hydroxyanilino)-4-(p-chlorophenyl)thiazole (SKi, also referred to as SKI-II), FTY720 (Fingolimod), and (S)-FTY720 vinylphosphonate inhibit sphingosine kinase 1 activity with distinct kinetics, indicating that these compounds exhibit different binding modalities with sphingosine kinase 1. Thus, SKi is a mixed inhibitor of sphingosine and ATP binding, whereas FTY720 is competitive with sphingosine and uncompetitive with ATP, and (S)-FTY720 vinylphosphonate is uncompetitive with sphingosine and is a mixed inhibitor with respect to ATP.

View Article and Find Full Text PDF

The enforcement of sphingosine-1-phosphate (S1P) signaling network protects from radiation-induced pneumonitis. We now demonstrate that, in contrast to early postirradiation period, late postirradiation sphingosine kinase-1 (SphK1) and sphingoid base-1-phosphates are associated with radiation-induced pulmonary fibrosis (RIF). Using the mouse model, we demonstrate that RIF is characterized by a marked upregulation of S1P and dihydrosphingosine-1-phosphate (DHS1P) levels in the lung tissue and in circulation accompanied by increased lung SphK1 expression and activity.

View Article and Find Full Text PDF