Publications by authors named "Gorowska-Wojtowicz E"

The present study was designed to evaluate how estradiol alone or in combination with G protein-coupled estrogen receptor (GPER) agonists and GPER and peroxisome proliferator-activated receptor (PPAR) antagonists alter the expression of tumor growth factor β (TGF-β), cyclooxygenase-2 (COX-2), hypoxia inducible factor 1-alpha (HIF-1α), and vascular endothelial growth factor (VEGF) in mouse testis explants and MA-10 mouse tumor Leydig cells. In order to define the hormone-associated signaling pathway, the expression of MAPK and PI3K/Akt was also examined. Tissue explants and cells were treated with estradiol as well as GPER agonist (ICI 182,780), GPER antagonist (G-15), PPARα antagonist (GW6471), and PPARγ antagonist (T00709072) in various combinations.

View Article and Find Full Text PDF

Rabbit, nutria and chinchilla testes were evaluated to compare testicular cellular senescence. There were no major species-specific differences in structure of either seminiferous tubules or interstitial tissue. There, however, were occasional abnormalities in seminiferous tubule structure with there being multinucleated and exfoliated cells present in rabbit testes.

View Article and Find Full Text PDF

Here, we studied the impact of exposure to short daylight conditions on the expression of senescence marker (p16), membrane androgen receptor (ZIP9) and extracellular signal-regulated kinase (ERK 1/2), as well as cyclic AMP (cAMP) and testosterone levels in the testes of mature bank voles. Animals were assigned to groups based on an analysis of testis diameter, weight, seminiferous tubule diameter and the interstitial tissue area: group 1, not fully regressed (the highest parameters); group 2 (medium parameters); or group 3, regressed (the lowest parameters). Cells positive for p16 were observed only in the seminiferous tubule epithelium.

View Article and Find Full Text PDF

Phoenixin (PNX) is a newly discovered peptide produced by proteolytic cleavage of a small integral membrane protein 20 (Smim20), which acts as an important regulator of energy homeostasis and reproduction. Since dysfunction of reproduction is characteristic in polycystic ovarian syndrome (PCOS), the role of PNX in pathogenesis of PCOS needs further investigation. The objective of this study was to determine expression of Smim20, PNX-14 and its receptor GRP173 in the hypothalamus, ovary and periovarian adipose tissue (PAT) of letrozole induced PCOS rats.

View Article and Find Full Text PDF

Although epidemiological studies from the last years report an increase in the incidences of Leydig cell tumors (previously thought to be a rare disease), the biochemical characteristics of that tumor important for understanding its etiology, diagnosis, and therapy still remains not completely characterized. Our prior studies reported G-protein coupled estrogen receptor signaling and estrogen level disturbances in Leydig cell tumors. In addition, we found that expressions of multi-level-acting lipid balance- and steroidogenesis-controlling proteins including peroxisome proliferator-activated receptor are altered in this tumor.

View Article and Find Full Text PDF

Leydig cell tumors (LCT) are the most common type of testicular stromal tumor. Herein, we investigate the G protein-coupled estrogen receptor (GPER) and peroxisome proliferator-activated receptor (PPAR) implication in regulation of lipid homeostasis including the expression of steroidogenesis-controlling molecules in clinical specimens of LCTs and tumor Leydig cells (MA-10). We showed the general structure and morphology of LCTs by scanning electron and light microscopy.

View Article and Find Full Text PDF

The etiology and molecular characteristics of Leydig cell tumor (LCT) are scarcely known. From the research data stems that estrogen can be implicated in LCT induction and development, however it is not investigated in detail. Considering the above, herein we analyzed the relation between G-protein coupled membrane estrogen receptor, peroxisome proliferator-activated receptor and insulin-like family peptides (insulin-like 3 peptide; INSL3 and relaxin; RLN) expressions as well as estrogen level with impact of xenoestrogen (bisphenol A; BPA, tetrabromobisphenol A; TBBPA, and tetrachlorobisphenol A; TCBPA).

View Article and Find Full Text PDF

The function of estrogen-related receptor (ERR) in testicular cells is at the beginning of exploration. Our previous findings showed that expression pattern of estrogen-related receptor (ERR) in mouse Leydig cell depends on physiological status of the cell. Exogenous hormones/hormonally active chemicals affect ERR expression.

View Article and Find Full Text PDF

Organotypic culture of testicular fragments from 7-day-old male pigs (Polish White Large) was used. Tissues were treated with an antagonist of G-protein coupled estrogen receptor (GPER) (G-15; 10 nM), and bisphenol A (BPA), and its analogs (TBBPA, TCBPA; 10 nM) alone or in combination and analyzed using electron and light (stainings for collagen fibers, lipid droplet and autophagy markers) microscopes. In addition, mRNA and protein abundances and localization of molecules required for miRNA biogenesis and function (Drosha, Exportin 5; EXPO5, Dicer, and Argonaute 2; AGO2) were assessed together with calcium ion (Ca) and estradiol concentrations.

View Article and Find Full Text PDF

In this study mouse Leydig cell (MA-10) were treated with G-protein coupled membrane estrogen receptor antagonist (G-15; 10 nM). Cells were analyzed by Western blotting for expression of estrogen-related receptors (ERRα, β and γ), steroidogenic markers (lutropin receptor; LHR and 3β-hydroxysteroid dehydrogenase; 3β-HSD) and lipid droplet markers (perilipin; PLIN and microtubule-associated protein 1 A/1B-light chain 3; LC3). Concomitantly, microscopic analyses by light microscope (immunofluorescent staining for lipid droplets, PLIN and LC3) as well as by electron microscope (for lipid droplet ultrastructure) were utilized.

View Article and Find Full Text PDF

We aim to explore the presence of a novel cell type, telocytes (TCs), in the bank vole testis interstitium following G-coupled membrane estrogen receptor (GPER) signaling withdrawal. In addition, the involvement of interstitial cells in lipid homeostasis was investigated. Bank voles (actively reproducing or regressed) were administered with GPER antagonist (G-15; 50 μg/kg bw) injections.

View Article and Find Full Text PDF

Telocytes (TCs), a novel type of interstitial cells, are involved in tissue homeostasis maintenance. This study aimed to investigate TC presence in the interstitium of mouse testis. Additionally, inactivation of the G-coupled membrane estrogen receptor (GPER) in the testis was performed to obtain insight into TC function, regulation, and interaction with other interstitial cells.

View Article and Find Full Text PDF

We tested whether G-coupled membrane estrogen receptor (GPER) and peroxisome proliferator activated receptor (PPAR) partnership exists and whether this interaction regulates mouse Leydig cell function. Mature and aged mice were treated with the antagonist of GPER (G-15; 50 μg/kg b.w).

View Article and Find Full Text PDF

In this study, G-coupled estrogen receptor (GPER) was inactivated, by treatment with antagonist (G-15), in testes of C57BL/6 mice: immature (3 weeks old), mature (3 months old) and aged (1.5 years old) (50 μg/kg bw), as well as MA-10 mouse Leydig cells (10 nM/24 h) alone or in combination with 17β-estradiol or antiestrogen (ICI 182,780). In G-15-treated mice, overgrowth of interstitial tissue was found in both mature and aged testes.

View Article and Find Full Text PDF

Estrogen-related receptors (ERRs) α, β and γ appear to be novel molecules implicated in estrogen signaling. We blocked and activated ERRs in mouse (C57BL/6) adrenals and adrenocortical cells (H295R) using pharmacological agents XCT 790 (ERRα antagonist) and DY131 (ERRβ/γ agonist), respectively. Mice were injected with XCT 790 or DY131 (5 μg/kg bw) while cells were exposed to XCT 790 or DY131 (0.

View Article and Find Full Text PDF

The study was designed to examine the effects of model plastic derived compounds, bisphenol A (BPA) and dibutyl phthalate (DBP), on juxtacrine communication in adult rat testis, by evaluating the expression of Notch pathway components. Testicular explant were exposed in vitro to BPA (5 × 10 M, 2.5 × 10 M, 5 × 10 M) or DBP (10 M, 10 M, 10 M) for 24 h.

View Article and Find Full Text PDF

To get a deeper insight into the function of estrogen-related receptors (ERRs) and dissect underlying mechanism in Leydig cells, ERRs (type α, β and γ) were blocked or activated in testes of adult bank voles (Myodes glareolus) which show seasonal changes in the intratesticular sex hormones level. Both actively reproducing animals (long day conditions; LD) and those with regression of the reproductive system (short day conditions; SD) received intraperitoneal injections of selective ERRα antagonist 3-[4-(2,4-Bis-trifluoromethylbenzyloxy)-3-methoxyphenyl]-2-cyano-N-(5-trifluoromethyl-1,3,4-thiadiazol-2-yl)acrylamide (XCT 790) or selective ERRβ/ERRγ agonist N-(4-(Diethylaminobenzylidenyl)-N'-(4-hydroxybenzoyl)-hydrazine (DY131) (50 μ/kg bw; six doses every other day). Markedly more, XCT 790 (P < 0.

View Article and Find Full Text PDF

This study aimed to investigate rapid effect of anti-androgen 2-hydroxyflutamide (HF) on cadherin/catenin complex and androgen receptor (AR) phosphorylation in prostate cancer cell lines. In addition, a role of PI3K/Akt and MAPK/ERK1/2 pathways in mediating these effects was explored. We have demonstrated that in androgen-sensitive LNCaP cells HF induced rapid increase of E-cadherin phosphorylation at Ser 838/840 (p<0.

View Article and Find Full Text PDF

Within the reproductive system both aryl hydrocarbon receptor (AHR) and G-protein-coupled receptor 30 (GPR30) contribute to estrogen signaling and controlling of reproductive physiology. The specific question is whether and how AHR and GPR30 are involved in regulation of testis function in seasonally breeding rodents. Bank vole testes were obtained from animals reared under 18 hours light:6 hours dark (LD) and 6 hours light:18 hours dark (SD) conditions.

View Article and Find Full Text PDF