For decades, grain boundary engineering has proven to be one of the most effective approaches for tailoring the mechanical properties of metallic materials, although there are limits to the fineness and types of microstructures achievable, due to the rapid increase in grain size once being exposed to thermal loads (low thermal stability of crystallographic boundaries). Here, we deploy a unique chemical boundary engineering (CBE) approach, augmenting the variety in available alloy design strategies, which enables us to create a material with an ultrafine hierarchically heterogeneous microstructure even after heating to high temperatures. When applied to plain steels with carbon content of only up to 0.
View Article and Find Full Text PDFThe composition of nano-sized alloy carbides formed by interphase precipitation in V-Nb and V-Ti multiple microalloyed low-carbon steels is analyzed by using three-dimensional atom probe. Carbide-forming alloying elements including V, Nb, and Ti, are simultaneously precipitated from the early stage of isothermal treatment, whose atoms are uniformly distributed in the carbide particles, even after prolonged holding. Cluster analysis by the maximum separation method, with parameters optimized using different methods, is carried out to extract alloy carbides from matrix.
View Article and Find Full Text PDFThe lath martensite structure contains hierarchical substructures, such as blocks, packets and prior austenite grains. Generally, high-angle grain boundaries in the lath martensite structure, i.e.
View Article and Find Full Text PDFIn order to develop a novel alloy with a changeable Young's modulus for spinal fixation applications, we investigated the microstructures, Young's moduli, and tensile properties of metastable Ti-30Zr-(Cr, Mo) alloys subjected to solution treatment (ST) and cold rolling (CR). All the alloys comprise a β phase and small athermal ω phase, and they exhibit low Young's moduli after ST. During CR, deformation-induced phase transformation occurs in all the alloys.
View Article and Find Full Text PDF