Objectives: It is significant to know how much early detection and screening could reduce the proportion of occult metastases and benefit NSCLC patients.
Methods: We used previously designed and validated mathematical models to obtain the characteristics of LC in the population including undetectable metastases at the time of diagnosis. The survival was simulated using the survival functions from Surveillance, Epidemiology and End Results (SEER) data stratified by stage.
Single nucleotide substitutions are the most common type of somatic mutations in cancer genome. The goal of this study was to use publicly available somatic mutation data to quantify negative and positive selection in individual lung tumors and test how strength of directional and absolute selection is associated with clinical features. The analysis found a significant variation in strength of selection (both negative and positive) among tumors, with median selection tending to be negative even though tumors with strong positive selection also exist.
View Article and Find Full Text PDFBackground: Although the associations between genetic variations and lung cancer risk have been explored, the epigenetic consequences of DNA methylation in lung cancer development are largely unknown. Here, the genetically predicted DNA methylation markers associated with non-small cell lung cancer (NSCLC) risk by a two-stage case-control design were investigated.
Methods: The genetic prediction models for methylation levels based on genetic and methylation data of 1595 subjects from the Framingham Heart Study were established.
Background: Many patients with glioblastoma multiforme (GBM) develop deep venous thrombosis or pulmonary emboli. Cell-free circulating mitochondria increase after brain injury and are associated with coagulopathy.
Objectives: This study evaluated whether mitochondria play a role in the GBM-induced hypercoagulable state.
Introduction: Mosaic chromosomal alterations (mCAs) detected in white blood cells represent a type of clonal hematopoiesis (CH) that is understudied compared with CH-related somatic mutations. A few recent studies indicated their potential link with nonhematological cancers, especially lung cancer.
Methods: In this study, we investigated the association between mCAs and lung cancer using the high-density genotyping data from the OncoArray study of INTEGRAL-ILCCO, the largest single genetic study of lung cancer with 18,221 lung cancer cases and 14,825 cancer-free controls.
Introduction: In recent years, the proportion of patients with NSCLC diagnosed at an early stage has increased continuously.
Methods: In this study, we analyzed samples and data collected from 119 samples from 67 early stage patients with NSCLC, including 52 pairs of tumor and adjacent non-neoplastic samples, and performed RNA-sequencing analysis with high sequencing depth.
Results: We found that immune-related genes were highly enriched among the differentially expressed genes and observed significantly higher inferred immune infiltration levels in adjacent non-neoplastic samples than in tumor samples.
Differential methylation plays an important role in melanoma development and is associated with survival, progression and response to treatment. However, the mechanisms by which methylation promotes melanoma development are poorly understood. The traditional explanation of selective advantage provided by differential methylation postulates that hypermethylation of regulatory 5'-cytosine-phosphate-guanine-3' dinucleotides (CpGs) downregulates the expression of tumor suppressor genes and therefore promotes tumorigenesis.
View Article and Find Full Text PDFClonal hematopoiesis of indeterminate potential (CHIP) is associated with a small risk of developing hematologic malignancies and a higher risk of cardiovascular diseases (CVD). We asked whether the reverse correlation exists and cardiometabolic risk factors have an impact on the progression of myelodysplastic syndrome (MDS) to acute myeloid leukemia (AML). We investigated the association between abnormal lipid profiles and inflammation in MDS, which shares many genetic mutations with CHIP, and the risk of developing acute leukemia.
View Article and Find Full Text PDFTo identify new susceptibility loci to lung cancer among diverse populations, we performed cross-ancestry genome-wide association studies in European, East Asian and African populations and discovered five loci that have not been previously reported. We replicated 26 signals and identified 10 new lead associations from previously reported loci. Rare-variant associations tended to be specific to populations, but even common-variant associations influencing smoking behavior, such as those with CHRNA5 and CYP2A6, showed population specificity.
View Article and Find Full Text PDFLargely, cancer development is driven by acquisition and positive selection of somatic mutations that increase proliferation and survival of tumor cells. As a result, genes related to cancer development tend to have an excess of somatic mutations in them. An excess of missense and/or nonsense mutations in a gene is an indicator of its cancer relevance.
View Article and Find Full Text PDFObjective: We undertook this study to examine the X chromosome complement in participants with systemic sclerosis (SSc) as well as idiopathic inflammatory myopathies.
Methods: The participants met classification criteria for the diseases. All participants underwent single-nucleotide polymorphism typing.
Genome wide association studies (GWASs) have identified tens of thousands of single nucleotide polymorphisms (SNPs) associated with human diseases and characteristics. A significant fraction of GWAS findings can be false positives. The gold standard for true positives is an independent validation.
View Article and Find Full Text PDFEur J Pharm Sci
December 2021
In drug development, preformulation is the key step, where compatibility between active pharmaceutical ingredient (API) and excipients is the crucial parameter. To simplify this process, reliable and suitable prediction models are needed. In this case, Hansen solubility parameters (HSPs) can be used.
View Article and Find Full Text PDFBackground: The smoking behavior of American Indians (AI) differs from that of non-Hispanic whites (NHW). Typically light smokers, cessation interventions in AIs are generally less effective. To develop more effective cessation programs for AIs, clinicians, researchers, and public health workers need a better understanding of the genetic factors involved in their smoking behavior.
View Article and Find Full Text PDFWe hypothesized that a joint analysis of cancer risk-associated single-nucleotide polymorphism (SNP) and somatic mutations in tumor samples can predict functional and potentially causal SNPs from GWASs. We used mutations reported in the Catalog of Somatic Mutations in Cancer (COSMIC). Confirmed somatic mutations were subdivided into two groups: (1) mutations reported as SNPs, which we call mutational/SNPs and (2) somatic mutations that are not reported as SNPs, which we call mutational/noSNPs.
View Article and Find Full Text PDFWe hypothesized that human genes differ by their sensitivity to ultraviolet (UV) exposure. We used somatic mutations detected by genome-wide screens in melanoma and reported in the Catalog Of Somatic Mutations In Cancer. As a measure of UV sensitivity, we used the number of silent mutations generated by C>T transitions in pyrimidine dimers of a given transcript divided by the number of potential sites for this type of mutations in the transcript.
View Article and Find Full Text PDFFew germline mutations are known to affect lung cancer risk. We performed analyses of rare variants from 39,146 individuals of European ancestry and investigated gene expression levels in 7,773 samples. We find a large-effect association with an ATM L2307F (rs56009889) mutation in adenocarcinoma for discovery (adjusted Odds Ratio = 8.
View Article and Find Full Text PDFBackground: A substantial proportion of cancer driver genes (CDG) are also cancer predisposition genes. However, the associations between genetic variants in lung CDGs and the susceptibility to lung cancer have rarely been investigated.
Methods: We selected expression-related single-nucleotide polymorphisms (eSNP) and nonsynonymous variants of lung CDGs, and tested their associations with lung cancer risk in two large-scale genome-wide association studies (20,871 cases and 15,971 controls of European descent).
Background: Over the relatively short history of Genome Wide Association Studies (GWASs), hundreds of GWASs have been published and thousands of disease risk-associated SNPs have been identified. Summary statistics from the conducted GWASs are often available and can be used to identify SNP features associated with the level of GWAS statistical significance. Those features could be used to select SNPs from gray zones (SNPs that are nominally significant but do not reach the genome-wide level of significance) for targeted analyses.
View Article and Find Full Text PDFIntroduction: Inherited susceptibility to lung cancer risk in never-smokers is poorly understood. The major reason for this gap in knowledge is that this disease is relatively uncommon (except in Asians), making it difficult to assemble an adequate study sample. In this study we conducted a genome-wide association study on the largest, to date, set of European-descent never-smokers with lung cancer.
View Article and Find Full Text PDFThe development of cancer is driven by the accumulation of many oncogenesis-related genetic alterations and tumorigenesis is triggered by complex networks of involved genes rather than independent actions. To explore the epistasis existing among oncogenesis-related genes in lung cancer development, we conducted pairwise genetic interaction analyses among 35,031 SNPs from 2027 oncogenesis-related genes. The genotypes from three independent genome-wide association studies including a total of 24,037 lung cancer patients and 20,401 healthy controls with Caucasian ancestry were analyzed in the study.
View Article and Find Full Text PDFBackground: Usually, genes with a higher-than-expected number of somatic mutations in tumor samples are assumed to be cancer related. We identified genes with a fewer-than-expected number of somatic mutations - "untouchable genes".
Methods: To predict the expected number of somatic mutations, we used a linear regression model with the number of mutations in the gene as an outcome, and gene characteristics, including gene size, nucleotide composition, level of evolutionary conservation, expression level and others, as predictors.
Background: Because driver mutations provide selective advantage to the mutant clone, they tend to occur at a higher frequency in tumor samples compared to selectively neutral (passenger) mutations. However, mutation frequency alone is insufficient to identify cancer genes because mutability is influenced by many gene characteristics, such as size, nucleotide composition, etc. The goal of this study was to identify gene characteristics associated with the frequency of somatic mutations in the gene in tumor samples.
View Article and Find Full Text PDF