Publications by authors named "Gorka Munoz-Gil"

Stochastic processes have found numerous applications in science, as they are broadly used to model a variety of natural phenomena. Due to their intrinsic randomness and uncertainty, they are, however, difficult to characterize. Here, we introduce an unsupervised machine learning approach to determine the minimal set of parameters required to effectively describe the dynamics of a stochastic process.

View Article and Find Full Text PDF

Finding the best strategy to minimize the time needed to find a given target is a crucial task both in nature and in reaching decisive technological advances. By considering learning agents able to switch their dynamics between standard and active Brownian motion, here we focus on developing effective target-search behavioral policies for microswimmers navigating a homogeneous environment and searching for targets of unknown position. We exploit projective simulation, a reinforcement learning algorithm, to acquire an efficient stochastic policy represented by the probability of switching the phase, the navigation mode, in response to the type and the duration of the current phase.

View Article and Find Full Text PDF

To characterize the mechanisms governing the diffusion of particles in biological scenarios, it is essential to accurately determine their diffusive properties. To do so, we propose a machine-learning method to characterize diffusion processes with time-dependent properties at the experimental time resolution. Our approach operates at the single-trajectory level predicting the properties of interest, such as the diffusion coefficient or the anomalous diffusion exponent, at every time step of the trajectory.

View Article and Find Full Text PDF

Liquid-liquid phase separation (LLPS) is emerging as a key physical principle for biological organization inside living cells, forming condensates that play important regulatory roles. Inside living nuclei, transcription factor (TF) condensates regulate transcriptional initiation and amplify the transcriptional output of expressed genes. However, the biophysical parameters controlling TF condensation are still poorly understood.

View Article and Find Full Text PDF

Deviations from Brownian motion leading to anomalous diffusion are found in transport dynamics from quantum physics to life sciences. The characterization of anomalous diffusion from the measurement of an individual trajectory is a challenging task, which traditionally relies on calculating the trajectory mean squared displacement. However, this approach breaks down for cases of practical interest, e.

View Article and Find Full Text PDF