Recent advances in the enzymatic degradation of poly(ethylene terphthalate) (PET) have led to a number of PET hydrolytic enzymes and mutants being developed. With the amount of PET building up in the natural world, there is a pressing need to develop scalable methods of breaking down the polymer into its monomers for recycling or other uses. Mechanoenzymatic reactions have gained traction recently as a green and efficient alternative to traditional biocatalytic reactions.
View Article and Find Full Text PDFThe rise and spread of antimicrobial resistance has necessitated the development of novel antimicrobials which are effective against drug resistant pathogens. Aminoglycoside antibiotics (AGAs) remain one of our most effective classes of bactericidal drugs. However, they are challenging molecules to selectively modify by chemical synthesis, requiring the use of extensive protection and deprotection steps leading to long, atom- and step-inefficient synthetic routes.
View Article and Find Full Text PDFEpoxide hydrolases (EHs) catalyse the conversion of epoxides into vicinal diols. These enzymes have extensive value in biocatalysis as they can generate enantiopure epoxides and diols which are important and versatile synthetic intermediates for the fine chemical and pharmaceutical industries. Despite these benefits, they have seen limited use in the bioindustry and novel EHs continue to be reported in the literature.
View Article and Find Full Text PDFCells balance glycolysis with respiration to support their metabolic needs in different environmental or physiological contexts. With abundant glucose, many cells prefer to grow by aerobic glycolysis or fermentation. Using 161 natural isolates of fission yeast, we investigated the genetic basis and phenotypic effects of the fermentation-respiration balance.
View Article and Find Full Text PDF