In this study, a CaP biomaterial was used as a carrier for rhBMP-2. Biomaterials were investigated in calvarial and femoral defects using a rabbit animal model, with unloaded biomaterials serving as control. Fluorochrome labels were administered at days 14 and 70.
View Article and Find Full Text PDFThe present study investigated whether bone regeneration and biomaterial replacement would be improved by loading of biogenous biphasic biomaterial scaffolds (HA/TCP ratio 30/70) with rhBMP-2, and whether the placement of three barrier membranes differing in structure and porosity (prototyped SLA Ti specimens, GORE RESOLUT Adapt specimens, and titanized TiMESH light specimens) would have a synergistic effect. A rabbit calvarial model was used for the implantation studies. Histological specimens were obtained after 12 weeks and evaluated quantitatively for differences between the various material combinations.
View Article and Find Full Text PDFIn the present study, two biphasic calcium phosphate biomaterials (BCP) with HA/TCP ratios of 50/50 and 30/70 were obtained from a pure HA biomaterial. The biomaterials which showed the same three-dimensional geometry were implanted into corticocancellous costal defects of sheep. In the specimens of all three biomaterials, abundant bone formation, mineral dissolution from the biomaterial scaffolds, and active cellular resorption of the scaffolds was present after 6 and 12 months.
View Article and Find Full Text PDFThe present study investigated the hypothesis that hydroxyapatite (HA), tricalcium phosphate (TCP), and a HA-gel coated on endosseous titanium (Ti) implants by spark discharging (SD) and dip coating would achieve predictable osseointegration without evident bioresorption of the coatings on the long term. A costal sheep model was used for the implantation of the HA/SD, HA/TCP/SD, and HA-gel/SD specimens, which were retrieved 6 and 12 months following implantation. HA and Ti coatings on implants obtained by conventional plasma spraying (HA/PS, Ti/PS) were used as controls.
View Article and Find Full Text PDFThis case report is focused on the histologic findings of bone tissue supplied with two different hydroxyapatites (HAs) used for maxillary sinus floor grafting in the same patient after various healing intervals. An insufficient unilateral sinus floor grafting with Bio-Oss biomaterial was followed by an additional grafting procedure with Algipore biomaterial performed 4 years later. Bone samples obtained during second-stage dental implantation contained the interesting combination of Bio-Oss, a bovine anorganic bone substitute, and Algipore, a porous algae-derived HA, in close vicinity, yet after different healing periods.
View Article and Find Full Text PDF