Front Endocrinol (Lausanne)
August 2024
Introduction: Fibroblast growth factor 20 (Fgf20), a member of the Fgf9 subfamily, was identified as an important regulator of bone differentiation and homeostasis processes. However, the role of Fgf20 in bone physiology has not been approached yet. Here we present a comprehensive bone phenotype analysis of mice with functional ablation of Fgf20.
View Article and Find Full Text PDFThe skeletal system mirrors several processes in the vertebrate body that impact developmental malfunctions, hormonal disbalance, malfunction of calcium metabolism and turn over, and inflammation processes such as arthrosis. X-ray micro computed tomography is a useful tool for 3D in situ evaluation of the skeletal system in a time-related manner, but results depend highly on resolution. Here, we provide the methodological background for a graduated evaluation from whole-body analysis of skeletal morphology and mineralization to high-resolution analysis of femoral and vertebral microstructure.
View Article and Find Full Text PDFAmeloblasts are specialized epithelial cells in the jaw that have an indispensable role in tooth enamel formation-amelogenesis. Amelogenesis depends on multiple ameloblast-derived proteins that function as a scaffold for hydroxyapatite crystals. The loss of function of ameloblast-derived proteins results in a group of rare congenital disorders called amelogenesis imperfecta.
View Article and Find Full Text PDFHighly specialized enamel matrix proteins (EMPs) are predominantly expressed in odontogenic tissues and diverged from common ancestral gene. They are crucial for the maturation of enamel and its extreme complexity in multiple independent lineages. However, divergence of EMPs occured already before the true enamel evolved and their conservancy in toothless species suggests that non-canonical functions are still under natural selection.
View Article and Find Full Text PDFEnamel is the hardest tissue in mammalian organisms and is the layer covering the tooth. It consists of hydroxyapatite (HAP) crystallites, which mineralize on a protein scaffold known as the enamel matrix. Enamel matrix assembly is a very complex process mediated by enamel matrix proteins (EMPs).
View Article and Find Full Text PDF