Publications by authors named "Goreti Morais"

Targeted therapy remains the future of anti-cancer drug development, owing to the lack of specificity of current treatments which lead to damage in healthy normal tissues. ATR inhibitors have in recent times demonstrated promising clinical potential, and are currently being evaluated in the clinic. However, despite the considerable optimism for clinical success of these inhibitors, reports of associated normal tissues toxicities remain a concern and can compromise their utility.

View Article and Find Full Text PDF

Duocarmycin natural products are promising anticancer cytotoxins but too potent for systemic use. Re-engineering of the duocarmycin scaffold has enabled the discovery of prodrugs designed for bioactivation by tissue-specific cytochrome P450 (P450) enzymes. Lead prodrugs bioactivated by both P450 isoforms CYP1A1 and CYP2W1 have shown promising results in xenograft studies; however, to fully understand the potential of these agents it is desirable to compare dual-targeting compounds with isoform-selective analogs.

View Article and Find Full Text PDF

Epidemiological studies have shown that head and neck cancer (HNC) is a complex multistage process that in part involves exposure to a combination of carcinogens and the capacity of certain drug-metabolising enzymes including cytochrome P450 (CYP) to detoxify or activate such carcinogens. In this study, CYP1A1, CYP1B1 and CYP2W1 expression in HNC was correlated with potential as target for duocarmycin prodrug activation and selective therapy. In the HNC cell lines, elevated expression was shown at the gene level for CYP1A1 and CYP1B1 whereas CYP2W1 was hardly detected.

View Article and Find Full Text PDF

The duocarmycins belong to a class of agent which has great potential for use in cancer therapy. Their exquisite potency means they are too toxic for systemic use, and targeted approaches are required to unlock their clinical potential. In this study, we have explored seco-OH-chloromethylindoline (CI) duocarmycin-based bioprecursors for their potential for cytochrome P450 (CYP)-mediated cancer cell kill.

View Article and Find Full Text PDF

The duocarmycins belong to a class of agent that has fascinated scientists for over four decades. Their exquisite potency, unique mechanism of action, and efficacy in multidrug-resistant tumour models makes them attractive to medicinal chemists and drug hunters. However, despite great advances in fine-tuning biological activity through structure-activity relationship studies (SARS), no duocarmycin-based therapeutic has reached clinical approval.

View Article and Find Full Text PDF

Despite considerable progress with our understanding of glioblastoma multiforme (GBM) and the precise delivery of radiotherapy, the prognosis for GBM patients is still unfavorable with tumor recurrence due to radioresistance being a major concern. We recently developed a cross-linked iron oxide nanoparticle conjugated to azademethylcolchicine (CLIO-ICT) to target and eradicate a subpopulation of quiescent cells, glioblastoma initiating cells (GICs), which could be a reason for radioresistance and tumor relapse. The purpose of our study was to investigate if CLIO-ICT has an additive therapeutic effect to enhance the response of GBMs to ionizing radiation.

View Article and Find Full Text PDF

The development of pharmacologically active compounds based on bis(thiosemicarbazones) (BTSC) and on their coordination to metal centers constitutes a promising field of research. We have recently explored this class of ligands and their Cu(II) complexes for the design of cancer theranostics agents with enhanced uptake by tumoral cells. In the present work, we expand our focus to aliphatic and aromatic BTSC Zn(II) complexes bearing piperidine/morpholine pendant arms.

View Article and Find Full Text PDF

Structural features from the anticancer prodrug nemorubicin (MMDX) and the DNA-binding molecule DRAQ5™ were used to prepare anthraquinone-based compounds, which were assessed for their potential to interrogate cytochrome P450 (CYP) functional activity and localisation. 1,4-disubstituted anthraquinone 8 was shown to be 5-fold more potent in EJ138 bladder cancer cells after CYP1A2 bioactivation. In contrast, 1,5-bis((2-morpholinoethyl)amino) substituted anthraquinone 10 was not CYP-bioactivated but was shown to be fluorescent and subsequently photo-activated by a light pulse (at a bandwidth 532-587 nm), resulting in punctuated foci accumulation in the cytoplasm.

View Article and Find Full Text PDF

Glioblastoma (GBM) has a dismal prognosis. Evidence from preclinical tumor models and human trials indicates the role of GBM-initiating cells (GIC) in GBM drug resistance. Here, we propose a new treatment option with tumor enzyme-activatable, combined therapeutic and diagnostic (theranostic) nanoparticles, which caused specific toxicity against GBM tumor cells and GICs.

View Article and Find Full Text PDF

Aiming to explore alternative mechanisms of cellular uptake and cytotoxicity, we have studied a new family of copper(II) complexes (CuL-CuL) with bis(thiosemicarbazone) (BTSC) ligands containing pendant protonable cyclic amines (morpholine and piperidine). Herein, we report on the synthesis and characterization of these new complexes, as well as on their biological performance (cytotoxic activity, cellular uptake, protein and DNA binding), in comparison with the parental CuATSM (ATSM=diacetyl-bis(N4-methylthiosemicarbazonate) complex without pendant cyclic amines. The new compounds have been characterized by a range of analytical techniques including ESI-MS, IR spectroscopy, cyclic voltammetry, reverse-phase HPLC and X-ray spectroscopy.

View Article and Find Full Text PDF

Novel strategies for the efficient synthesis of unsymmetrical glycosyl disulfides are reported. Glycosyl disulfides are increasingly important as glycomimetics and molecular probes in glycobiology. Sialosyl disulfides are synthesised directly from the chlorosialoside Neu5Ac2Cl, proceeding via a thiol-disulfide exchange reaction between the sialosyl thiolate and symmetrical disulfides.

View Article and Find Full Text PDF

Merging classical organic anticancer drugs with metal-based compounds in one single molecule offers the possibility of exploring new approaches for cancer theranostics, i.e. the combination of diagnostic and therapeutic modalities.

View Article and Find Full Text PDF

Steroid receptors have demonstrated to be potentially useful biological targets for the diagnosis and therapy follow-up of hormonally responsive cancers. The over-expression of these proteins in human cancer cells as well as their binding characteristics provides a favourable mechanism for the localization of malignant tumours. The need for newer and more selective probes to non-invasively assess steroid receptor expression in hormone-responsive tumours has encouraged the synthesis and the biological evaluation of several steroidal derivatives labelled with positron and gamma emitters.

View Article and Find Full Text PDF

The first report of the formation of an acetyl disulfide sialoside during the synthesis of thioglycosides is described. This compound is a by-product in the synthesis of the 2-thioacetyl sialoside commonly used in thioglycoside preparation. Our investigations into the identification of this novel disulfide are described.

View Article and Find Full Text PDF

The synthesis of 1,1-thiodisaccharide trehalose analogues in good to excellent yields by a Lewis acid (BF(3).Et(2)O)-catalysed coupling of sugar per-O-acetate with thiosugar is described. The reactivity of different sugar per-O-acetates and thiosugars is explored.

View Article and Find Full Text PDF

Three novel 17 alpha-ethynyl-Delta(6,7)-estra-3,17beta-diols and their 17 alpha-[(125)I]-iodovinyl derivatives, containing different C7-cyanoalkyl chains, were studied as potential radioligands for the estrogen receptor. The influence of the chain length on the biological behaviour of the compounds was assessed through in vitro ER binding assays of the ethynyl derivatives and breast cancer cell uptake studies of the 17 alpha-[(125)I]-iodovinyl-Delta(6,7)-estra-3,17beta-diols. A difference in alkyl chain induced a decrease in ER binding affinities of substances, however, the receptor-binding affinities (RBA) of all compounds were lower than that of estradiol itself.

View Article and Find Full Text PDF