Introduction: Despite the key role of the endothelium in atherosclerosis, there are no direct techniques for its analysis. The study of extracellular vesicles of endothelial origin (EEVs), might lead to the identification of molecular signatures and early biomarkers of atherosclerosis. The aim of this work was to set up the methods for EEVs separation and transcriptomic analysis.
View Article and Find Full Text PDFBackground And Aims: Peripheral arterial disease (PAD) is a leading cause of morbimortality worldwide. Lipocalin-2 (LCN2) has been associated with higher risk of amputation or mortality in PAD and might be involved in muscle regeneration. Our aim is to unravel the role of LCN2 in skeletal muscle repair and PAD.
View Article and Find Full Text PDFDiscovered three decades ago, microRNAs (miRNAs) are now recognized as key players in the pathophysiology of multiple human diseases, including those affecting the cardiovascular system. As such, miRNAs have emerged as promising therapeutic targets for preventing the onset and/or progression of several cardiovascular diseases. Anti-miRNA antisense oligonucleotides or "antagomirs" precisely block the activity of specific miRNAs and are therefore a promising therapeutic strategy to repress pathological miRNAs.
View Article and Find Full Text PDFObjective: Peripheral arterial disease (PAD) is the most prevalent cardiovascular (CV) condition globally. Despite the high CV risk of PAD patients, no reliable predictors of adverse clinical evolution are yet available. In this regard, previous transcriptomic analyses revealed increased expression of calprotectin (S100A8/A9) and lipocalin-2 (LCN2) in circulating extracellular vesicles (EVs) of patients with PAD.
View Article and Find Full Text PDFDiabetic kidney disease (DKD) is the leading cause of end stage renal disease (ESRD) in developed countries, affecting more than 40% of diabetes mellitus (DM) patients. DKD pathogenesis is multifactorial leading to a clinical presentation characterized by proteinuria, hypertension, and a gradual reduction in kidney function, accompanied by a high incidence of cardiovascular (CV) events and mortality. Unlike other diabetes-related complications, DKD prevalence has failed to decline over the past 30 years, becoming a growing socioeconomic burden.
View Article and Find Full Text PDFPeripheral arterial disease (PAD) of the lower extremities is a chronic illness predominantly of atherosclerotic aetiology, associated to traditional cardiovascular (CV) risk factors. It is one of the most prevalent CV conditions worldwide in subjects >65 years, estimated to increase greatly with the aging of the population, becoming a severe socioeconomic problem in the future. The narrowing and thrombotic occlusion of the lower limb arteries impairs the walking function as the disease progresses, increasing the risk of CV events (myocardial infarction and stroke), amputation and death.
View Article and Find Full Text PDFPeripheral arterial disease (PAD) is associated with a high risk of cardiovascular events and death and is postulated to be a critical socioeconomic cost in the future. Extracellular vesicles (EVs) have emerged as potential candidates for new biomarker discovery related to their protein and nucleic acid cargo. In search of new prognostic and therapeutic targets in PAD, we determined the prothrombotic activity, the cellular origin and the transcriptomic profile of circulating EVs.
View Article and Find Full Text PDFPeripheral artery disease (PAD) is a major cause of acute and chronic illness, with extremely poor prognosis that remains underdiagnosed and undertreated. Trimethylamine-N-Oxide (TMAO), a gut derived metabolite, has been associated with atherosclerotic burden. We determined plasma levels of TMAO by mass spectrometry and evaluated their association with PAD severity and prognosis.
View Article and Find Full Text PDFIntroduction: Wound healing after myocardial infarction (MI) is mediated by different cell types, secreted proteins, components of the extracellular matrix (ECM) and, as increasing evidences suggest, extracellular vesicles (EVs). We aim to determine the dynamics of release and origin of EVs after MI, as well as their biological activity on endothelial cells (ECs).
Methods: MI was induced in WT mice and blood and tissues collected at baseline, 3, 15 and 30 days post-ligation for cardiac function (echocardiography) and histological evaluation.