Publications by authors named "Gordon R Campbell"

The idea that smooth muscle cells can exist in multiple phenotypic states depending on the functional demands placed upon them has been around for >5 decades. However, much of the literature today refers to only recent articles, giving the impression that it is a new idea. At the same time, the current trend is to delve deeper and deeper into transcriptional regulation of smooth muscle genes, and much of the work describing the change in biology of the cells in the different phenotypic states does not appear to be known.

View Article and Find Full Text PDF

The local progenitor population in the olfactory bulb (OB) gives rise to mitral and tufted projection neurons during embryonic development. In contrast, OB interneurons are derived from sources outside the bulb where neurogenesis continues throughout life. While many of the genes involved in OB interneuron development have been characterized, the genetic pathways driving local progenitor cell differentiation in this tissue are largely unknown.

View Article and Find Full Text PDF

Implantation of sterile foreign objects in the peritoneal cavity of an animal initiates an inflammatory response and results in encapsulation of the objects by bone marrow-derived cells. Over time, a multilayered tissue capsule develops with abundant myofibroblasts embedded in extracellular matrix. The present study used the transgenic MacGreen mouse to characterize the time-dependent accumulation of monocyte subsets and neutrophilic granulocytes in the inflammatory infiltrate and within the tissue capsule by their differential expression of the csf1r-EGFP transgene, F4/80, and Ly6C.

View Article and Find Full Text PDF

Our objective was to produce avascular, myofibroblast-rich tissue capsules for use as autologous grafts for hollow, smooth muscle-walled visceral organs-bladder, uterus and vas deferens. To produce tissue for grafting, templates of the appropriate shape were implanted in the peritoneal cavities of rats or rabbits. After 2-3 weeks, the templates were removed, the encapsulating myofibroblast-rich tissue harvested and grafted to replace resected segments of bladder, vas deferens or uterus of the same animals in which the tissue was grown.

View Article and Find Full Text PDF

Our aim was to develop novel scaffolds to engineer tissue tubes of smooth muscle-like cells for autologous grafting. Small diameter tubular poly(lactic acid) scaffolds with randomly distributed, interconnected pores up to 100 mum were produced using a thermally induced phase separation method. The scaffolds were surface modified using various biomolecules via a layer-by-layer deposition technique, and implanted in the peritoneal cavities of rats.

View Article and Find Full Text PDF

This article discusses the importance of the endothelium for successful vascular grafts derived from both native arteries and synthetic materials. It also discusses the fundamental strategies to endothelialize synthetic grafts in animal experiments and in the clinic, as well as the use of endothelial progenitor cells (EPCs), bone marrow-derived cells, and mesothelium as endothelial substitutes.

View Article and Find Full Text PDF

Sinorhizobium meliloti produces an exopolysaccharide called succinoglycan that plays a critical role in promoting symbiosis with its host legume, alfalfa (Medicago sativa). We performed a transposon mutagenesis and screened for mutants with altered succinoglycan production and a defect in symbiosis. In this way, we identified a putative two-component histidine kinase associated with a PAS sensory domain, now designated CbrA (calcofluor-bright regulator A).

View Article and Find Full Text PDF

An insight into a previously unknown step in B(12) biosynthesis was unexpectedly obtained through our analysis of a mutant of the symbiotic nitrogen fixing bacterium Sinorhizobium meliloti. This mutant was identified based on its unusually bright fluorescence on plates containing the succinoglycan binding dye calcofluor. The mutant contains a Tn5 insertion in a gene that has not been characterized previously in S.

View Article and Find Full Text PDF

Background: It has been demonstrated that embryonic kidneys (metanephroi) xenotransplanted into the omentum of adult recipients continue to develop and display immune protection due to their more naïve immune presentation. To date, this has been achieved using rat, pig and human metanephroi, with unilateral nephrectomy (UNX) of recipient rats a requisite of renal development. The aim of this study was to adapt this approach for use in mice and examine the parameters affecting successful onward development in this species.

View Article and Find Full Text PDF

Since the introduction of synthetic vascular grafts in the 1960s, only two-stage endothelial cell seeding has demonstrated any significant improvement over conventional vascular grafts, and its benefits have yet to be demonstrated on a large scale. Tissue engineering is a rapidly expanding field with great potential, but efforts to construct tissue-engineered arterial grafts have, to date, yielded little clinical success. This review explores the latest approaches to the construction of a superior vascular graft, along with its potential for use in the clinic in the future.

View Article and Find Full Text PDF

The Rho family GTPases are regulatory molecules that link surface receptors to organisation of the actin cytoskeleton and play major roles in fundamental cellular processes. In the vasculature Rho signalling pathways are intimately involved in the regulation of endothelial barrier function, inflammation and transendothelial leukocyte migration, platelet activation, thrombosis and oxidative stress, as well as smooth muscle contraction, migration, proliferation and differentiation, and are thus implicated in many of the changes associated with atherogenesis. Indeed, it is believed that many of the beneficial, non-lipid lowering effects of statins occur as a result of their ability to inhibit Rho protein activation.

View Article and Find Full Text PDF

Although vascular bypass grafting remains the mainstay for revascularization for ischemic heart disease and peripheral vascular disease, many patients do not have healthy vessels suitable for harvest. Thus, prosthetic grafts made of synthetic polymers were developed, but their use is limited to high-flow/low-resistance conditions because of poor elasticity, low compliance, and thrombogenicity of their synthetic surfaces. To fill this need, several laboratories have produced in vivo or in vitro tissue-engineered blood vessels using molds or prosthetic or biodegradable scaffolds, but each artificial graft has significant problems.

View Article and Find Full Text PDF

Phenotypic modulation of smooth muscle cells (SMC) involves dramatic changes in expression and organization of contractile and cytoskeletal proteins, but little is known of how this process is regulated. The present study used a cell culture model to investigate the possible involvement of RhoA, a known regulator of the actin cytoskeleton. In rabbit aortic SMC seeded into primary culture at moderate density, Rho activation was high at two functionally distinct time-points, first as cells modulated to the "synthetic" phenotype, and again upon confluence and return to the "contractile" phenotype.

View Article and Find Full Text PDF

Objective: The purpose of this study was to grow "artificial blood vessels" for autologous transplantation as arterial interposition grafts in a large animal model (dog).

Method And Results: Tubing up to 250 mm long, either bare or wrapped in biodegradable polyglycolic acid (Dexon) or nonbiodegradable polypropylene (Prolene) mesh, was inserted in the peritoneal or pleural cavity of dogs, using minimally invasive techniques, and tethered at one end to the wall with a loose suture. After 3 weeks the tubes and their tissue capsules were harvested, and the inert tubing was discarded.

View Article and Find Full Text PDF

The inadequacy of conventional synthetic grafts has led to efforts to construct a superior vascular graft. In vivo tissue engineering is one approach to this problem that has been investigated for half a century and enables the construction of autogenous vascular prostheses. Three types of in vivo engineering are explored: remodelling of implanted scaffolds, fibrocollagenous tubes, and the artificial artery generated in the peritoneal cavity.

View Article and Find Full Text PDF

Coronary and peripheral artery bypass grafting is commonly used to relieve the symptoms of vascular deficiencies, but the supply of autologous artery or vein may not be sufficient or suitable for multiple bypass or repeat procedures, necessitating the use of other materials. Synthetic materials are suitable for large bore arteries but often thrombose when used in smaller arteries. Suitable replacement grafts must have appropriate characteristics, including resistance to infection, low immunogenicity and good biocompatability and thromboresistance, with appropriate mechanical and physiological properties and cheap and fast manufacture.

View Article and Find Full Text PDF

Although the role that lipopolysaccharide (LPS) plays in the symbiosis between Sinorhizobium meliloti and alfalfa has been studied for over a decade, its function in this process remains controversial and poorly understood. This is largely due to a lack of mutants affected by its synthesis. In one of the definitive studies concerning this issue, Clover et al.

View Article and Find Full Text PDF

Percutaneous transluminal coronary angioplasty is a frequently used interventional technique to reopen arteries that have narrowed because of atherosclerosis. Restenosis, or renarrowing of the artery shortly after angioplasty, is a major limitation to the success of the procedure and is due mainly to smooth muscle cell accumulation in the artery wall at the site of balloon injury. In the present study, we demonstrate that the antiangiogenic sulfated oligosaccharide, PI-88, inhibits primary vascular smooth muscle cell proliferation and reduces intimal thickening 14 days after balloon angioplasty of rat and rabbit arteries.

View Article and Find Full Text PDF

Heparan sulphate is an important mediator in determining vascular smooth muscle cell (SMC) phenotype. The sulphation pattern of the heparan sulphate chains is critical to their function. We have examined the initial step in the biosynthesis of the sulphated domains mediated by the enzyme heparan sulphate N-deacetylase/N-sulphotransferase (NDST).

View Article and Find Full Text PDF

The four known tropomyosin genes have highly conserved DNA and amino acid sequences, and at least 18 isoforms are generated by alternative RNA splicing in muscle and non-muscle cells. No rabbit tropomyosin nucleotide sequences are known, although protein sequences for alpha- and beta-tropomyosin expressed by rabbit skeletal muscle have been described. Subtractive hybridisation was used to select for genes differentially expressed in rabbit aortic smooth muscle cells (SMC), during the change in cell phenotype in primary culture that is characterised by a loss of cytoskeletal filaments and contractile proteins.

View Article and Find Full Text PDF

Our analyses of lipopolysaccharide mutants of Sinorhizobium meliloti offer insights into how this bacterium establishes the chronic intracellular infection of plant cells that is necessary for its nitrogen-fixing symbiosis with alfalfa. Derivatives of S. meliloti strain Rm1021 carrying an lpsB mutation are capable of colonizing curled root hairs and forming infection threads in alfalfa in a manner similar to a wild-type strain.

View Article and Find Full Text PDF