Publications by authors named "Gordon Kennedy"

Significance: Spatial frequency domain imaging (SFDI) applies patterned near-infrared illumination to quantify the optical properties of subsurface tissue. The periocular region is unique due to its complex ocular adnexal anatomy. Although SFDI has been successfully applied to relatively flat tissues, regions that have significant height variations and curvature may result in optical property inaccuracies.

View Article and Find Full Text PDF

Significance: Over the past decade, machine learning (ML) algorithms have rapidly become much more widespread for numerous biomedical applications, including the diagnosis and categorization of disease and injury.

Aim: Here, we seek to characterize the recent growth of ML techniques that use imaging data to classify burn wound severity and report on the accuracies of different approaches.

Approach: To this end, we present a comprehensive literature review of preclinical and clinical studies using ML techniques to classify the severity of burn wounds.

View Article and Find Full Text PDF

Significance: We present a motion-resistant three-wavelength spatial frequency domain imaging (SFDI) system with ambient light suppression using an 8-tap complementary metal-oxide semiconductor (CMOS) image sensor (CIS) developed at Shizuoka University. The system addresses limitations in conventional SFDI systems, enabling reliable measurements in challenging imaging scenarios that are closer to real-world conditions.

Aim: Our study demonstrates a three-wavelength SFDI system based on an 8-tap CIS.

View Article and Find Full Text PDF

Significance: Studying cerebral hemodynamics may provide diagnostic information on neurological conditions. Wide-field imaging techniques, such as laser speckle imaging (LSI) and optical intrinsic signal imaging, are commonly used to study cerebral hemodynamics. However, they often do not account appropriately for the optical properties of the brain that can vary among subjects and even during a single measurement.

View Article and Find Full Text PDF

A consistent set of measurement techniques must be applied to reliably and reproducibly evaluate the efficacy of treatments for cutaneous neurofibromas (cNFs) in people with neurofibromatosis type 1 (NF1). cNFs are neurocutaneous tumors that are the most common tumor in people with NF1 and represent an area of unmet clinical need. This review presents the available data regarding approaches in use or development to identify, measure, and track cNFs, including calipers, digital imaging, and high-frequency ultrasound sonography.

View Article and Find Full Text PDF

Significance: Spatial frequency domain imaging (SFDI) is a wide-field diffuse optical imaging technique for separately quantifying tissue reduced scattering (μs  '  ) and absorption (μa) coefficients at multiple wavelengths, providing wide potential utility for clinical applications such as burn wound characterization and cancer detection. However, measured μs  '   and μa can be confounded by absorption from melanin in patients with highly pigmented skin. This issue arises because epidermal melanin is highly absorbing for visible wavelengths and standard homogeneous light-tissue interaction models do not properly account for this complexity.

View Article and Find Full Text PDF

A critical need exists for early, accurate diagnosis of burn wound severity to help identify the course of treatment and outcome of the wound. Laser speckle imaging (LSI) is a promising blood perfusion imaging approach, but it does not account for changes in tissue optical properties that can occur with burn wounds, which are highly dynamic environments. Here, we studied optical property dynamics following burn injury and debridement and the associated impact on interpretation of LSI measurements of skin perfusion.

View Article and Find Full Text PDF

Significance: Spatial frequency domain imaging (SFDI) is a wide-field imaging technique that provides quantitative maps of tissue optical properties. We describe a compact SFDI imager that employs a multispectral compound-eye camera. This design enables simultaneous image acquisition at multiple wavelengths.

View Article and Find Full Text PDF

Significance: Spatial frequency domain imaging (SFDI), a noncontact wide-field imaging technique using patterned illumination with multiple wavelengths, has been used to quantitatively measure structural and functional parameters of in vivo tissue. Using SFDI in a porcine model, we previously found that scattering changes in skin could potentially be used to noninvasively assess burn severity and monitor wound healing. Translating these findings to human subjects necessitates a better understanding of the variation in "baseline" human skin scattering properties across skin types and anatomical locations.

View Article and Find Full Text PDF

While visual assessment by a clinician is the standard of care for burn severity evaluations, new technologies at various stages of development are attempting to add objectivity to this practice by quantifying burn severity. Assessment accuracy generally improves after the burn injury has progressed, but early assessments that correctly identify superficial partial and deep partial burns have the potential to lead to more prompt treatments and shorter recovery times. To date, Spatial Frequency Domain Imaging (SFDI) has only been used in animal models of burns, but has shown the potential to categorize burns accurately at earlier time points.

View Article and Find Full Text PDF

A new catalytically active zeolite, designated EMM-17 (ExxonMobil Material-17), with a three-dimensional (3D) 11 × 10 × 10-ring topology has been discovered from high throughput experiments while evaluating a family of new organic structure directing agents (OSDAs), 1-alkyl-4-(pyrrolidin-1-yl)pyridin-1-ium hydroxide. The framework structure was determined by model building techniques and confirmed by diffraction calculations. The EMM-17 structure is a random intergrowth of two polymorphs which have a 3D arrangement of intersecting 11 × 10 × 10-ring pores.

View Article and Find Full Text PDF

There is a need for noninvasive, quantitative methods to characterize wound healing in the context of longitudinal investigations related to regenerative medicine. Such tools have the potential to inform the assessment of wound status and healing progression and aid the development of new treatments. We employed spatial frequency domain imaging (SFDI) to characterize the changes in optical properties of tissue during wound healing progression in a porcine model of split-thickness skin grafts and also in a model of burn wound healing with no graft intervention.

View Article and Find Full Text PDF

We introduce a method for quantitative hyperspectral optical imaging in the spatial frequency domain (hs-SFDI) to image tissue absorption (μa) and reduced scattering (μs') parameters over a broad spectral range. The hs-SFDI utilizes principles of spatial scanning of the spectrally dispersed output of a supercontinuum laser that is sinusoidally projected onto the tissue using a digital micromirror device. A scientific complementary metal-oxide-semiconductor camera is used for capturing images that are demodulated and analyzed using SFDI computational models.

View Article and Find Full Text PDF

Accurate assessment of burn severity is critical for wound care and the course of treatment. Delays in classification translate to delays in burn management, increasing the risk of scarring and infection. To this end, numerous imaging techniques have been used to examine tissue properties to infer burn severity.

View Article and Find Full Text PDF

Burn wounds and wound healing invoke several biological processes that may complicate the interpretation of spectral imaging data. Through analysis of spatial frequency domain spectroscopy data (450 to 1000 nm) obtained from longitudinal investigations using a graded porcine burn wound healing model, we have identified features in the absorption spectrum that appear to suggest the presence of hemoglobin breakdown products, e.g.

View Article and Find Full Text PDF

We present an approach to quantify drug-target engagement using in vivo fluorescence endomicroscopy, validated with in vitro measurements. Doxorubicin binding to chromatin changes the fluorescence lifetime of histone-GFP fusions that we measure in vivo at single-cell resolution using a confocal laparo/endomicroscope. We measure both intra- and inter-tumor heterogeneity in doxorubicin chromatin engagement in a model of peritoneal metastasis of ovarian cancer, revealing striking variation in the efficacy of doxorubicin-chromatin binding depending on intra-peritoneal or intravenous delivery.

View Article and Find Full Text PDF

Tissue simulating phantoms can provide a valuable platform for quantitative evaluation of the performance of diffuse optical devices. While solid phantoms have been developed for applications related to characterizing exogenous fluorescence and intrinsic chromophores such as hemoglobin and melanin, we report the development of a poly(dimethylsiloxane) (PDMS) tissue phantom that mimics the spectral characteristics of tissue water. We have developed these phantoms to mimic different water fractions in tissue, with the purpose of testing new devices within the context of clinical applications such as burn wound triage.

View Article and Find Full Text PDF

Background And Ojectives: The current standard for diagnosis of burn severity and subsequent wound healing is through clinical examination, which is highly subjective. Several new technologies are shifting focus to burn care in an attempt to help quantify not only burn depth but also the progress of healing. While accurate early assessment of partial thickness burns is critical for dictating the course of treatment, the ability to quantitatively monitor wound status over time is critical for understanding treatment efficacy.

View Article and Find Full Text PDF

Uracil DNA glycosylase plays a key role in DNA maintenance via base excision repair. Its role is to bind to DNA, locate unwanted uracil, and remove it using a base flipping mechanism. To date, kinetic analysis of this complex process has been achieved using stopped-flow analysis but, due to limitations in instrumental dead-times, discrimination of the "binding" and "base flipping" steps is compromised.

View Article and Find Full Text PDF

We present an ex vivo study of temporally and spectrally resolved autofluorescence in a total of 47 endoscopic excision biopsy/resection specimens from colon, using pulsed excitation laser sources operating at wavelengths of 375 nm and 435 nm. A paired analysis of normal and neoplastic (adenomatous polyp) tissue specimens obtained from the same patient yielded a significant difference in the mean spectrally averaged autofluorescence lifetime -570 ± 740 ps (p = 0.021, n = 12).

View Article and Find Full Text PDF

Cartilage is a vital organ to maintain joint function. Upon arthritis, proteolytic enzymes initiate degradation of cartilage extracellular matrix (ECM) resulting in eventual loss of joint function. However, there are only limited ways of non-invasively monitoring early chemical changes in cartilage matrix.

View Article and Find Full Text PDF

We have compared the performance of two Troponin-C-based calcium FRET sensors using fluorescence lifetime read-outs. The first sensor, TN-L15, consists of a Troponin-C fragment inserted between CFP and Citrine while the second sensor, called mTFP-TnC-Cit, was realized by replacing CFP in TN-L15 with monomeric Teal Fluorescent Protein (mTFP1). Using cytosol preparations of transiently transfected mammalian cells, we have measured the fluorescence decay profiles of these sensors at controlled concentrations of calcium using time-correlated single photon counting.

View Article and Find Full Text PDF

A simple method is proposed for separating NMR resonances from protonated and non-protonated aromatic carbons in solids under fast magic angle spinning (MAS). The approach uses a MAS-synchronized spin-echo to exploit the differences in rotational recoupling of the dipolar interactions while fully refocusing the isotropic chemical shifts. This strategy extends the relevant time scale of spin evolution to milliseconds and circumvents the limitation of the traditional dipolar dephasing method, which in fast rotating solids is disrupted by rotational refocusing.

View Article and Find Full Text PDF

We present a clinical investigation of diffuse reflectance and time-resolved autofluorescence spectra of skin cancer with an emphasis on basal cell carcinoma. A total of 25 patients were measured using a compact steady-state diffuse reflectance/fluorescence spectrometer and a fibre-optic-coupled multispectral time-resolved spectrofluorometer. Measurements were performed in vivo prior to surgical excision of the investigated region.

View Article and Find Full Text PDF

A fluorescence lifetime imaging (FLIM) technology platform intended to read out changes in Förster resonance energy transfer (FRET) efficiency is presented for the study of protein interactions across the drug-discovery pipeline. FLIM provides a robust, inherently ratiometric imaging modality for drug discovery that could allow the same sensor constructs to be translated from automated cell-based assays through small transparent organisms such as zebrafish to mammals. To this end, an automated FLIM multiwell-plate reader is described for high content analysis of fixed and live cells, tomographic FLIM in zebrafish and FLIM FRET of live cells via confocal endomicroscopy.

View Article and Find Full Text PDF