Publications by authors named "Gordon K Livingston"

Radioiodine (131I) is widely used in the treatment of hyperthyroidism and as an effective ablative therapy for differentiated thyroid cancer. Radioiodine (131I) constitutes 90% of the currently used therapies in the field of nuclear medicine. Here, we report the cytogenetic findings of a long-term follow-up study of 27 years on a male patient who received two rounds of radioiodine treatment within a span of 26 months between 1992 and 1994 for his papillary thyroid cancer.

View Article and Find Full Text PDF

Cells exposed to ionizing radiation have a wide spectrum of DNA lesions that include DNA single-strand breaks, DNA double-strand breaks (DSBs), oxidative base damage and DNA-protein crosslinks. Among them, DSB is the most critical lesion, which when mis-repaired leads to unstable and stable chromosome aberrations. Currently, chromosome aberration analysis is the preferred method for biological monitoring of radiation-exposed humans.

View Article and Find Full Text PDF

Here, we report the findings of a 25-year cytogenetic follow-up study on a male patient who received 2 rounds of radioiodine treatment within a span of 26 months (1.78 GBq in 1992 and 14.5 GBq in 1994).

View Article and Find Full Text PDF

Dicentric chromosome assay (DCA) is most frequently used for estimating the absorbed radiation dose in the peripheral blood lymphocytes of humans after occupational or incidental radiation exposure. DCA is considered to be the "gold standard" for estimating the absorbed radiation dose because the dicentric chromosome formation is fairly specific to ionizing radiation exposure and its baseline frequency is extremely low in non-exposed humans. However, performance of DCA for biodosimetry is labor intensive and time-consuming making its application impractical for radiological/nuclear mass casualty incidents.

View Article and Find Full Text PDF

Dicentric chromosome assay (DCA) is routinely used for estimating the absorbed radiation dose in exposed humans. Optimal lymphocyte viability is crucial for reliable dose estimation and most cytogenetic laboratories prefer the receipt of blood samples within 24 to 36 hours after collection. Delays in the shipment/receipt of samples can occur sometimes under certain unforeseen circumstances: (1) Adverse weather conditions, (2) distant location of blood collection sites, and (3) shipping and handling of a large number of samples after radiological/nuclear mass casualty incident(s).

View Article and Find Full Text PDF

Our previous studies demonstrated the cytogenetic effects in the peripheral blood lymphocytes of a 34-year-old male patient who received ablative radioactive 131iodine therapy (RIT) on two different occasions in 1992 and 1994. Assessment of RIT-induced chromosomal damage by the cytokinesis-blocked micronucleus assay (CBMN) showed the persistence of elevated micronucleus frequency in this patient for more than two decades since the first RIT. Subsequent cytogenetic analysis performed in 2012 revealed both stable and unstable aberrations, whose frequencies were higher than the baseline reported in the literature.

View Article and Find Full Text PDF

The purpose of this study was to compare cytogenetic data in a patient before and after treatment with radioiodine to evaluate the assays in the context of biological dosimetry. We studied a 34-year-old male patient who underwent a total thyroidectomy followed by ablation therapy with (131)I (19.28 GBq) for a papillary thyroid carcinoma.

View Article and Find Full Text PDF

Purpose: To evaluate the importance of annual intercomparisons for maintaining the capacity and capabilities of a well-established biodosimetry network in conjunction with assessing efficient and effective analysis methods for emergency response.

Materials And Methods: Annual intercomparisons were conducted between laboratories in the Canadian National Biological Dosimetry Response Plan. Intercomparisons were performed over a six-year period and comprised of the shipment of 10-12 irradiated, blinded blood samples for analysis by each of the participating laboratories.

View Article and Find Full Text PDF

Ionizing radiation exposure can induce profound changes in intracellular components, potentially leading to diverse health effects in exposed individuals. Any cellular component can be damaged by radiation, but some components affect cellular viability more profoundly than others. The ionization caused by radiation lasts longer than the initial inciting incident, continuing as 1 ionization incident causes another.

View Article and Find Full Text PDF

In the moments immediately following a nuclear detonation, casualties with a variety of injuries including trauma, burns, radiation exposure, and combined injuries would require immediate assistance. Accurate and timely radiation dose assessments, based on patient history and laboratory testing, are absolutely critical to support adequately the triage and treatment of those affected. This capability is also essential for ensuring the proper allocation of scarce resources and will support longitudinal evaluation of radiation-exposed individuals and populations.

View Article and Find Full Text PDF

The analysis of dicentric chromosomes in human peripheral blood lymphocytes (PBLs) by Giemsa staining is the most established method for biological dosimetry. However, this method requires a well-trained person because of the difficulty in detecting aberrations rapidly and accurately. Here, we applied a fluorescence in situ hybridization (FISH) technique, using telomere and centromere peptide nucleic acid (PNA) probes, to solve the problem of biological dosimetry in radiation emergency medicine.

View Article and Find Full Text PDF

Biological dosimetry is an essential tool for estimating radiation dose. The dicentric chromosome assay (DCA) is currently the tool of choice. Because the assay is labor-intensive and time-consuming, strategies are needed to increase throughput for use in radiation mass casualty incidents.

View Article and Find Full Text PDF

The World Health Organization (WHO) held a consultation meeting at WHO Headquarters, Geneva, Switzerland, December 17-18, 2007, to develop the framework for a global biodosimetry network. The WHO network is envisioned to enable dose assessment using multiple methods [cytogenetics, electron paramagnetic resonance (EPR), radionuclide bioassays, etc.]; however, the initial discussion focused on the cytogenetic bioassay (i.

View Article and Find Full Text PDF

This interlaboratory comparison validates the dicentric chromosome assay for assessing radiation dose in mass casualty accidents and identifies the advantages and limitations of an international biodosimetry network. The assay's validity and accuracy were determined among five laboratories following the International Organization for Standardization guidelines. Blood samples irradiated at the Armed Forces Radiobiology Research Institute were shipped to all laboratories, which constructed individual radiation calibration curves and assessed the dose to dose-blinded samples.

View Article and Find Full Text PDF

A fluorescence in situ hybridization (FISH) method was used to measure chromosome aberration rates in lymphocytes of 30 retired plutonium workers with combined internal and external radiation doses greater than 0.5 Sv along with 17 additional workers with predominantly external doses below 0.1 Sv.

View Article and Find Full Text PDF