Glutamate decarboxylase (GAD) is a Ca -calmodulin-activated, cytosolic enzyme that produces γ-aminobutyrate (GABA) as the committed step of the GABA shunt. This pathway bypasses the 2-oxoglutarate to succinate reactions of the tricarboxylic acid (TCA) cycle. GABA also accumulates during many plant stresses.
View Article and Find Full Text PDFFertilizer boron (B) and molybdenum (Mo) were provided to contrasting cultivars of subirrigated pot chrysanthemums at approximately 6-100% of current industry standards in an otherwise balanced nutrient solution during vegetative growth, and then all nutrients were removed during reproductive growth. Two experiments were conducted for each nutrient in a naturally lit greenhouse using a randomized complete block split-plot design. Boron (0.
View Article and Find Full Text PDF4-Aminobutyrate accumulates in plants under abiotic stress. Here, targeted quantitative profiling of metabolites and transcripts was conducted to monitor glutamate- and polyamine-derived 4-aminobutyrate production and its subsequent catabolism to succinate or 4-hydroxybutyrate in apple ( x Borkh.) fruit stored at 0 °C with 2.
View Article and Find Full Text PDFNADPH-dependent glyoxylate reductases from Arabidopsis thaliana (AtGLYR) convert both glyoxylate and succinic semialdehyde into their corresponding hydroxyacid equivalents. The primary sequence of cytosolic AtGLYR1 reveals several sequence elements that are consistent with the β-HAD (β-hydroxyacid dehydrogenase) protein family, whose members include 3-hydroxyisobutyrate dehydrogenase, tartronate semialdehyde reductase and 6-phosphogluconate dehydrogenase. Here, site-directed mutagenesis was utilized to identify catalytically important amino acid residues for glyoxylate reduction in AtGLYR1.
View Article and Find Full Text PDFMolecular modelling suggests that a group of proteins in plants known as the beta-hydroxyacid dehydrogenases, or the hydroxyisobutyrate dehydrogenase superfamily, includes enzymes that reduce succinic semialdehyde and glyoxylate to gamma-hydroxybutyrate and glycolate respectively. Recent biochemical and expression studies reveal that NADPH-dependent cytosolic (termed GLYR1) and plastidial (termed GLYR2) isoforms of succinic semialdehyde/glyoxylate reductase exist in Arabidopsis. Succinic semialdehyde and glyoxylate are typically generated in leaves via two distinct metabolic pathways, gamma-aminobutyrate and glycolate respectively.
View Article and Find Full Text PDFEnzymes that reduce the aldehyde chemical grouping (i.e. H-C=O) to its corresponding alcohol could be crucial in maintaining plant health.
View Article and Find Full Text PDF