Reactive metabolite formation is a major mechanism of hepatotoxicity. Although reactive electrophiles can be soft or hard in nature, screening strategies have generally focused on the use of glutathione trapping assays to screen for soft electrophiles, with many data sets available to support their use. The use of a similar assay for hard electrophiles using cyanide as the trapping agent is far less common, and there is a lack of studies with sufficient supporting data.
View Article and Find Full Text PDFUnderstanding compound metabolism in early drug discovery aids medicinal chemistry in designing molecules with improved safety and ADME properties. While advancements in metabolite prediction brings increased confidence, structural decisions require experimental data. metabolism studies using liquid chromatography and high-resolution mass spectrometry (LC-MS) are generally resource intensive and performed on very few compounds, limiting the chemical space that can be examined.
View Article and Find Full Text PDFIdentifying isomeric metabolites remains a challenging and time-consuming process with both sensitivity and unambiguous structural assignment typically only achieved through the combined use of LC-MS and NMR. Ion mobility mass spectrometry (IMMS) has the potential to produce timely and accurate data using a single technique to identify drug metabolites, including isomers, without the requirement for in-depth interpretation ( MS/MS data) using an automated computational pipeline by comparison of experimental collision cross-section (CCS) values with predicted CCS values. An ion mobility enabled Q-Tof mass spectrometer was used to determine the CCS values of 28 (14 isomeric pairs of) small molecule glucuronide metabolites, which were then compared to two different models; a quantum mechanics (QM) and a machine learning (ML) approach to test these approaches.
View Article and Find Full Text PDFHypersensitivity reactions occur frequently in patients upon treatment with sulfamethoxazole (SMX). These adverse effects have been attributed to nitroso sulfamethoxazole (SMX-NO), the reactive product formed from auto-oxidation of the metabolite SMX hydroxylamine. The ability of SMX-NO to prime naïve T-cells in vitro and also activate T-cells derived from hypersensitive patients has illustrated that T-cell activation may occur through the binding of SMX-NO to proteins or through the direct modification of MHC-bound peptides.
View Article and Find Full Text PDFThe HLA class I allele HLA-A*33:03 is a risk factor for ticlopidine-induced liver injury. Herein, we show HLA class I-restricted ticlopidine-specific CD8+ T-cell activation in healthy donors expressing HLA-A*33:03. Cloned CD8+ T-cells proliferated and secreted IFN-γ in the presence of ticlopidine and autologous antigen presenting cells.
View Article and Find Full Text PDFPHIP and SABRE hyperpolarized NMR methods are used to follow the unexpected metal-catalysed hydrogenation of quinazoline (Qu) to 3,4-dihydroquinazoline as the sole product. A solution of [IrCl(IMes)(COD)] in dichloromethane reacts with H2 and Qu to form [IrCl(H)2(IMes)(Qu)2] (2). The addition of methanol then results in its conversion to [Ir(H)2(IMes)(Qu)3]Cl (3) which catalyses the hydrogenation reaction.
View Article and Find Full Text PDFIon mobility-mass spectrometry (IM-MS) in combination with molecular modeling offers the potential for small molecule structural isomer identification by measurement of their gas phase collision cross sections (CCSs). Successful application of this approach to drug metabolite identification would facilitate resource reduction, including animal usage, and may benefit other areas of pharmaceutical structural characterization including impurity profiling and degradation chemistry. However, the conformational behavior of drug molecules and their metabolites in the gas phase is poorly understood.
View Article and Find Full Text PDFThe article describes and discusses the evolution of strategies to characterize metabolites in support of safety studies over the last 40 years, as well as future trends. Approaches to derive qualitative and quantitative information on metabolites are described, with a particular focus on the comparison of options to quantify metabolites in the absence of authentic standards. Current strategies to assess metabolite profiles are summarized into four general approaches and compared against a number of key criteria.
View Article and Find Full Text PDFUnderstanding the metabolism of a novel drug candidate in drug discovery and drug development is as important today as it was 30 years ago. What has changed in this period is the technology available for proficient metabolite characterization from complex biological sources. High-efficiency chromatography, sensitive MS and information-rich NMR spectroscopy are approaches that are now commonplace in the modern laboratory.
View Article and Find Full Text PDFDrug metabolism is an integral part of the drug development and drug discovery process. It is required to validate the toxicity of metabolites in support of safety testing and in particular provide information on the potential to form pharmacologically active or toxic metabolites. The current methodologies of choice for metabolite structural elucidation are liquid chromatography/tandem mass spectrometry (LC/MS/MS) and nuclear magnetic resonance (NMR) spectroscopy.
View Article and Find Full Text PDFThe use of nuclear magnetic resonance (NMR) spectroscopy and liquid chromatography-mass spectrometry (LC-MS) as complementary analytical techniques for open metabolic profiling is illustrated in the context of defining urinary biochemical discriminators between male and female Sprague-Dawley rats. Subsequent to the discovery of a female-specific urinary discriminator by LC-MS, further LC, MS, and NMR methods have been applied in a coordinated effort to identify this urinary component. Thereafter, the biological relevance and context of the identified component, in this case a steroid metabolite, has been achieved.
View Article and Find Full Text PDFThe process of metabolite identification is essential to the drug discovery and development process; this is usually achieved by liquid chromatography/tandem mass spectrometry (LC/MS/MS) or a combination of liquid chromatography/mass spectrometry (LC/MS) and nuclear magnetic resonance (NMR) spectroscopy. Metabolite identification is, however, a time-consuming process requiring an experienced skilled scientist. Multivariate statistical analysis has been used in the field of metabonomics to elucidate differences in endogenous biological profiling due to a toxic effect or a disease state.
View Article and Find Full Text PDFThe application of liquid chromatography/mass spectrometry (LC/MS) followed by principal components analysis (PCA) has been successfully applied to the screening of rat urine following the administration of three candidate pharmaceuticals. With this methodology it was possible to differentiate the control samples from the dosed samples and to identify the components of the mass spectrum responsible for the separation. These data clearly show that LC/MS is a viable alternative, or complementary, technique to proton NMR for metabonomics applications in drug discovery and development.
View Article and Find Full Text PDF