Publications by authors named "Gordon J Allan"

Fibrosis involves activation of fibroblasts, increased production of collagen and fibronectin and transdifferentiation into contractile myofibroblasts. The process resembles aspects of wound-healing but remains unresolved and can be life-threatening when manifest in the kidneys, lungs and liver, in particular. The causes are largely unknown, but recent suggestions that repetitive micro-injury results in the eventual failure of epithelial cell repair due to replicative senescence are gaining favour.

View Article and Find Full Text PDF

We have used Surface Plasmon Resonance (SPR) - based biosensor technology to investigate the interaction of the six high affinity insulin-like growth factor binding proteins (IGFBP 1-6) with the cell binding domain (CBD) of fibronectin. Using a biotinylated derivative of the ninth and tenth TypeIII domains of FN ((9-10)FNIII), we show that IGFBP-3 and -5 bind to FN-CBD. We show that this binding is inhibited by IGF-I and that, for IGFBP-5, binding occurs through the C-terminal heparin binding domain of the protein.

View Article and Find Full Text PDF

Fibrosis is associated with epithelial repair. It involves the activation of fibroblasts, increased production of extracellular matrix proteins and transdifferentiation to contractile, myofibroblasts that aid in wound contraction. This provisional matrix plugs the injured epithelium and provides a scaffold for epithelial cell migration, involving an epithelial-mesenchymal transition (EMT).

View Article and Find Full Text PDF

This review describes a comprehensive analysis of a surface plasmon resonance (SPR)-based biosensor study of molecular interactions in the insulin-like growth factor (IGF) molecular axis. In this study, we focus on the interaction between the polypeptide growth factors IGF-I and IGF-II with six soluble IGF binding proteins (IGFBP 1-6), which occur naturally in various biological fluids. We have describe the conditions required for the accurate determination of kinetic rate constants for these interactions and highlight the experimental and theoretical pitfalls, which may be encountered in the early stages of such a study.

View Article and Find Full Text PDF

The six members of the insulin-like growth factor-binding protein family (IGFBP-1-6) are important components of the IGF (insulin-like growth factor) axis. In this capacity, they serve to regulate the activity of both IGF-I and -II polypeptide growth factors. The IGFBPs are able to enhance or inhibit the activity of IGFs in a cell- and tissue-specific manner.

View Article and Find Full Text PDF

Transgenic mice expressing IGFBP-5 in the mammary gland exhibit increased cell death and plasmin generation. Because IGFBP-5 has been reported to bind to plasminogen activator inhibitor-1 (PAI-1), we determined the effects of this interaction in HC11 cells. PAI-1 prevented plasmin generation from plasminogen and inhibited cleavage of focal adhesions, expression of caspase 3, and cell death.

View Article and Find Full Text PDF

We have previously demonstrated that insulin-like growth factor binding protein-5 (IGFBP-5) is upregulated following treatment of the mouse mammary epithelial cell line HC11 with lactogenic hormones (dexamethasone, insulin, and prolactin-DIP). In addition, we have also shown that IGFBP-5 is upregulated in mammary epithelial cells in vivo during involution of the rodent mammary gland. We have, therefore, postulated that there may be a dual regulation of IGFBP-5 expression during the temporally separated processes of differentiation and apoptosis of mammary epithelial cells.

View Article and Find Full Text PDF

We have reported previously that mutation of two conserved nonbasic amino acids (G203 and Q209) within the highly basic 201-218 region in the C-terminal domain of IGF-binding protein-5 (IGFBP-5) decreases binding to IGFs. This study reveals that cumulative mutagenesis of the 10 basic residues in this region, to create the C-Term series of mutants, ultimately results in a 15-fold decrease in the affinity for IGF-I and a major loss in heparin binding. We examined the ability of mutants to inhibit IGF-mediated survival of MCF-7 cells and were able to demonstrate that this depended not only upon the affinity for IGF-I, but also the kinetics of this interaction, because IGFBP-5 mutants with similar affinity constants (K(D)) values, but with different association (Ka) and dissociation (Kd) rate values, had markedly different inhibitory properties.

View Article and Find Full Text PDF

Insulin-like growth factor binding proteins (IGFBPs) -3 and -5 are known to interact with various components of the extracellular matrix (ECM; e.g. heparin and heparan sulphate) and this interaction is believed to affect the affinity of both IGFBP species for their cognate ligands--IGF-I and -II.

View Article and Find Full Text PDF

Insulin-like growth factor-I (IGF-I) plays an important role as a survival factor during mammary gland development and remodelling during involution of the mature/lactating mammary gland, and elevated concentrations have been associated with increased risk of breast cancer. The actions of IGF-I are modulated by a family of binding proteins (IGFBPs) and we have shown that IGFBP-5 is associated with cell death in the mammary gland and more recently provided the first evidence that it is causally related to apoptosis of the mammary gland. A transgenic mouse expressing IGFBP-5 on a mammary-specific promoter led to impaired mammary development involving inhibition of IGF-signalling and involving members of the Bcl-2 family.

View Article and Find Full Text PDF

Using whole-mount in situ hybridisation techniques, we have examined the expression of major components of the insulin-like growth factor (IGF) axis in early development of the chicken embryo, including both IGF-I and -II, the type 1 IGF receptor ( IGFR), and two of the IGF binding proteins, ( IGFBP) -2 and -5. We report that these genes fall into two distinct groups with respect to expression pattern, with IGFBP-2 displaying broad overlap of mRNA expression with IGFR and IGF-I during early development, whereas the expression profile of IGFBP-5 most closely resembled that of IGF-II. Comparison between different stages revealed IGFBP-2 mRNA was detected as early as stage 3, whereas IGFBP-5 was first seen at stage 4.

View Article and Find Full Text PDF

We have previously reported that two highly conserved amino acids in the C-terminal domain of rat insulin-like growth factor-binding protein (IGFBP)-5, Gly(203) and Gln(209), are involved in binding to insulin-like growth factor (IGF)-1. Here we report that mutagenesis of both amino acids simultaneously (C-Term mutant) results in a cumulative effect and an even greater reduction in IGF-I binding: 30-fold measured by solution phase IGF binding assay and 10-fold by biosensor analysis. We compared these reductions in ligand binding to the effects of specific mutations of five amino acids in the N-terminal domain (N-Term mutant), which had previously been shown by others to cause a very large reduction in IGF-I binding ().

View Article and Find Full Text PDF

The heterozygous prolactin (PRL) receptor (PRLR(+/-)) mouse fails to develop a fully functional mammary gland at the end of the first pregnancy and shows markedly impaired lobuloalveolar development and milk secretion in young females. PRL and GH, acting through the IGF system, have interactive effects to enhance epithelial cell survival. Thus, we propose that a reduction in the expression of the PRLR may lead to increased IGFBP-5 expression (proapoptotic) and that GH may rescue mammary development by increasing IGF-I, an important mitogen and survival factor for the mammary epithelium.

View Article and Find Full Text PDF

We have described previously the properties of two mutant ovine growth hormone receptor extracellular domain (oGHR-ECD) proteins which were created by substituting sequences from the rat GHR at two different locations within the framework of the oGHR-ECD. The first mutation occurred at a region close to the N-terminus of oGHR-ECD between residues Thr 28 and Leu34 and created the protein T28E/N29S/N33K/L34P-oGHR-ECD, where the ovine specific residues T, N, N and L are replaced by their equivalent residues E, S, K and P from the rat protein. This site lies N-terminal to the first element of beta-strand structure in the GHR-ECD and we designated this protein as Site-A mutant.

View Article and Find Full Text PDF

We have previously demonstrated that IGFBP-5 production by mammary epithelial cells increases dramatically during involution of the mammary gland. To demonstrate a causal relationship between IGFBP-5 and cell death we created transgenic mice expressing IGFBP-5 in the mammary gland using a mammary-specific promoter, beta-lactoglobulin. DNA content in the mammary glands of transgenic mice was decreased as early as day 10 of pregnancy.

View Article and Find Full Text PDF